Белка производство – Производство белков одноклеточных и многоклеточных организмов

Содержание

Производство белков одноклеточных и многоклеточных организмов

Крупномасштабное культивирование микроорганизмов как прямой источник белка для питания человека и животных рассматривалось в качестве способа решения проблемы нехватки пищи в Германии уже во время Первой мировой войны. Были разработаны технологические процессы культивирования пивных дрожжей, которые после обработки и высушивания добавляли в супы и колбасы. Во время Второй мировой войны эти процессы уже были хорошо отработаны.

Выражение «белки одноклеточных организмов» возникло в 60-е гг. применительно к бактериальной биомассе (преимущественно дрожжей), которая используется в качестве пищевого компонента животных и человека. Особенно привлекательным является тот факт, что питательной средой при культивировании бактерий зачастую являются отходы сельского хозяйства: жмых сахарной свеклы в производстве сахара, подсолнечный жмых при получении растительного масла, молочная сыворотка в производстве сыра, древесная стружка и опилки и т. п.

Интерес к этой проблеме вспыхнул после публикации результатов исследований, показывающих возможность производства таких белковых концентратов на основе углеводородов. Нефтяные компании финансировали развитие этих исследований не только по причине использования углеводородов, но и в связи с благоприятными результатами пищевых тестов и перспективами сбыта.

Первая крупномасштабная фабрика белкового концентрата была разработана совместной фирмой «British Petroleum» (Великобритания) и «Италпротеин» (Италия) в 1975 г, ее производительность составляла 100000 т/год; сырьем были нормальные парафины. Этой проблемой занялась и Япония, были построены 8 заводов производительностью 1500 т белка/год. Однако интерес к производству белка одноклеточных организмов в 70-е гг. несколько снизился; отчасти из-за благоприятной сельскохозяйственной ситуации тех лет, но главным образом из-за несовершенства технологий, не удаляющих некоторые токсические вещества из конечного продукта.

В 80-е гг. германская фирма «Хехст», отличающаяся на рынке своими высокими технологиями, разработала процессы получения высококачественных белковых концентратов. В 80-е гг. одним из ведущих в мире производителем белков был СССР с его неисчерпаемой сырьевой базой. В Финляндии сооружена фабрика, использующая гриб Paecilomyces в сульфитных стоках бумажных комбинатов; мощность фабрики — 10000 т белка/год.

В странах ЕЭС производится белковых концентратов около 25 млн т в год. Эти цифры говорят о рентабельности предприятий. Корм для скота становится дорогим из-за ограничения земельных угодий и по ряду других причин. Белки одноклеточных организмов имеют огромные преимущества: высокую скорость воспроизводства, доступность сырьевых источников, решение проблем утилизации отходов многих предприятий и т. д.

Кроме того, белки имеют постоянный и воспроизводимый состав, их легко витаминизировать, добавлять необходимые микроэлементы; их также легко изготовлять в виде гранул или таблеток, их хранение осуществляется намного легче, чем хранение растений или других кормов.

Тем не менее, производители белка не рассматривают свою продукцию как заменитель белка в рационе животных: белковые концентраты служат добавками к кормам, удешевляя их и повышая их качество. Следует отметить, однако, что производство белковых добавок развивается не столь быстро, как прогнозировалось в 60-70 гг. Дело в том, что в значительной степени ужесточились требования к безопасности технологий, которые должны учитывать результаты всех необходимых токсикологических и пищевых испытаний.

Особенно осторожными следует быть в вопросах применения белковых концентратов в питании человека. Однако их использование для решения проблемы питания населения земли не имеет альтернативы, поскольку прогнозы свидетельствуют о том, что прирост населения не соответствует приросту продуктов питания. Можно с уверенностью сказать, что освоение микроорганизмов в питании человека только начинается.

Микроорганизмы начали использовать в производстве белковых продуктов задолго до возникновения микробиологии. Достаточно упомянуть всевозможные разновидности сыра, а также продукты, получаемые путем ферментации соевых бобов. И в первом, и во втором случае питательной основой является белок. При выработке этих продуктов, при участии микробов, происходит глубокое изменение свойств белоксодержащего сырья.

В результате получают пищевые продукты, которые можно дольше хранить (сыр) или удобнее потреблять (соевый творог). Микробы играют роль в производстве некоторых мясных продуктов, предназначенных для хранения. Так, при изготовлении некоторых сортов колбасы используется кислотное брожение, обычно при участии комплекса молочнокислых бактерий. Образовавшаяся кислота способствует сохранности продукта и вносит вклад в формирование его особого вкуса.

Этим, пожалуй, и ограничивается использование микроорганизмов в переработке белков. Возможности современной биотехнологии в этих производствах невелики, за исключением сыроделия. Другое дело — выращивание и сбор микробной массы, перерабатываемой в пищевые продукты: здесь биотехнология может проявить себя во всей полноте.

Производство белка одноклеточных организмов

По многим важным показателям биомасса микроорганизмов может обладать весьма высокой питательной ценностью. В немалой степени эта ценность определяется белками: у большинства видов они составляют значительную долю сухой массы клеток. На протяжении десятилетий активно обсуждаются и исследуются перспективы увеличения доли белка микроорганизмов в общем балансе производимого во всем мире белка.

Производство такого белка связано с крупномасштабным выращиванием определенных микроорганизмов, которые собирают и перерабатывают в пищевые продукты. Чтобы осуществить возможно более полное превращение субстрата в биомассу микробов, требуется многосторонний подход. Выращивание микробов в пищевых целях представляет интерес по двум причинам. Во-первых, они растут гораздо быстрее, чем растения и животные: время удвоения их численности измеряется часами. Это сокращает сроки, нужные для производства определенного количества пищи.

Во-вторых, в зависимости от выращиваемых микроорганизмов в качестве субстратов могут использоваться разнообразные виды сырья. Что касается субстратов, то здесь можно идти по двум главным направлениям: перерабатывать низкокачественные бросовые продукты или ориентироваться на легкодоступные углеводы и получать за их счет микробную биомассу, содержащую высококачественный белок.

Получение микробного белка на метаноле

Основное преимущество этого субстрата — высокая чистота и отсутствие канцерогенных примесей, хорошая растворимость в воде, высокая летучесть, позволяющая легко удалять его остатки из готового продукта. Биомасса, полученная на метаноле, не содержит нежелательных примесей, что дает возможность исключить из технологической схемы стадии очистки.

Однако необходимо учитывать при проведении процесса и такие особенности метанола, как горючесть и возможность образования взрывоопасных смесей с воздухом.

В качестве продуцентов, использующих метанол в конструктивном обмене, были изучены как дрожжевые, так и бактериальные штаммы. Из дрожжей были рекомендованы в производство Candida boidinii, Hansenula polymorpha и Piehia pastoris, оптимальные условия для которых (температура 34-37°C, рН 4,2-4,6) позволяют проводить процесс с экономическим коэффициентом усвоения субстрата до 0,40 при скорости протока в интервале 0,12-0,16 ч-1.

Среди бактериальных культур применяется Methylomonas clara, Pseudomonas rosea и др., способные развиваться при температуре 32-34°C, рН 6,0-6,4 с экономическим коэффициентом усвоения субстрата до 0,55 при скорости протока до 0,5ч-1.

Особенности процесса культивирования во многом обусловлены применяемым штаммом-продуцентом (дрожжи или бактерии) и условиями асептики. Ряд зарубежных фирм предлагает использовать дрожжевые штаммы и проводить выращивание в отсутствии строгой асептики. В этом случае технологический процесс протекает в ферментаторе эжекционного типа производительностью 75 т белка в сутки, а удельный расход метанола составляет 2,5 т/т белка.

При культивировании дрожжей в асептических условиях рекомендованы аппараты колонного или эрлифитного типа производительностью 75-100 т белка/сут при расходе метанола до 2,6з т/т белка. В том и другом случае процесс культивирования проводится одностадийно, без стадии «дозревания», с невысокой концентрацией субстрата (8-10 г/л).

В ряде стран в качестве продуцентов применяются бактериальные штаммы, процесс проводится в асептических условиях в ферментаторах эрлифитного или струйного типов производительностью 100-з00 т/сут и расходом метанола до 2,з т/т белка. Ферментация осуществляется одностадийно при невысоких концентрациях спирта (до 12 г/л), с высокой степенью утилизации метанола.

Наиболее перспективным по своей конструкции является струйный ферментатор Института технической химии (Германия). Ферментатор объемом 1000 м состоит из секций, расположенных одна над другой и соединенных между собой шахтными переливами.

Ферментационная среда из нижней секции ферментатора по напорному трубопроводу подается центробежными циркуляционными насосами в верхние шахтные переливы, через которые проходит в низлежащую секцию, подсасывая при этом воздух из газовода. Таким образом, среда протекает из секции в секцию, постоянно подсасывая новые порции воздуха. Падающие струи в шахтных переливах обеспечивают интенсивное аэрирование среды.

Питательная среда непрерывно подается в зону верхних шахтных переливов, а микробная суспензия отводится из выносных контуров. На стадии выделения для всех видов продуцентов предусмотрено отделение грануляции с целью получения готового продукта в гранулах.

Кормовые дрожжи, полученные на метаноле, имеют следующий состав (в %): сырой протеин 56-62; липиды 5-6; зола 7-11; влага 8-10; нуклеиновые кислоты 5-6. Бактериальная биомасса характеризуется следующим составом (в %): сырой протеин 70-74; липиды 7-9; зола 810; нуклеиновые кислоты 10-1з; влажность 8-10.

Кроме метанола, в качестве высококачественного сырья используют этанол, который имеет малую токсичность, хорошую растворимость в воде, небольшое количество примесей.

В качестве микроорганизмов — продуцентов белка на этиловом спирте как единственном источнике углерода могут использоваться дрожжи (Candida utilis, Sacharomyces lambica, Hansenula anomala, Acinetobacter calcoaceticus). Процесс культивирования проводят одностадийно в ферментаторах с высокими массообменными характеристиками при концентрации этанола не более 15 г/л.

Дрожжи, выращенные на этаноле, содержат (в %): сырого протеина — 60-62; липидов — 2-4; золы — 8-10; влаги — до 10.

Получение белковых веществ на углеводном сырье

Исторически одними из первых субстратов, используемых для получения кормовой биомассы, были гидролизаты растительных отходов, предгидрализаты и сульфитный щелок — отходы целлюлозно-бумажной промышленности.

Интерес к углеводному сырью как основному возобновляемому источнику углерода значительно возрос еще и с экологической точки зрения, так как оно может служить основой для создания безотходной технологии переработки растительных продуктов.

В связи с тем, что гидролизаты представляют собой сложный субстрат, состоящий из смеси гексоз и пентоз, среди промышленных штаммов-продуцентов получили распространение виды дрожжей C. utilis, C. scottii и C. tropicalis, способные наряду с гексозами усваивать пентозы, а также переносить наличие фурфурола в среде.

Состав питательной среды, в случае культивирования на углеводородном сырье, значительно отличается от применяемого при выращивании микроорганизмов на углеводородном субстрате. В гидролизатах и сульфитных щелоках имеются в небольшом количестве практически все необходимые для роста дрожжей микроэлементы. Недостающие количества азота, фосфора и калия вводятся в виде общего раствора солей аммофоса, хлорида калия и сульфата аммония.

Ферментация осуществляется в эрлифтных аппаратах конструкции Лефрансуа-Марийе объемом 320 и 600 м . Процесс культивирования дрожжей осуществляется в непрерывном режиме при рН 4,2-4,6. Оптимальная температура — от 30 до 40 °С.

Кормовые дрожжи, полученные при культивировании на гидролизатах растительного сырья и сульфитных щелоках, имеют следующий состав (в %): белок — 43-58; липиды — 2,3-3,0; углеводы — 11-23; зола -до 11; влажность — не более 10.

Одним из перспективных субстратов в производстве кормовой биомассы являются гидролизаты торфа, имеющие в своем составе большое количество легкоусвояемых моносахаров и органических кислот. Дополнительно в состав питательной среды вводятся лишь небольшие количества суперфосфата и хлорида калия. Источником азота служит аммиачная вода.

По качеству кормовая биомасса, полученная на гидролизатах торфа, превосходит дрожжи, выращенные на отходах растительного сырья.

Л.В. Тимощенко, М.В. Чубик

medbe.ru

Производство белка

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ

СЫКТЫВКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра ботаники

Реферат на тему:

ПРОИЗВОДСТВО БЕЛКА

Исполнитель: студентка 243 гр.

Аниськина Мария

Преподаватель: к.б.н., доцент,

Шергина Н.Н.

Сыктывкар 2000

СОДЕРЖАНИЕ_____________________________________________________________ 2

ВВЕДЕНИЕ_________________________________________________________________ 3

1.Белок одноклеточных организмов____________________________________________ 4

1.1.Получение микробного белка на низших спиртах__________________________ 4

1.2. Получение белковых веществ на углеводном сырье_______________________ 7

2.Грибной белок (микопротеин)_______________________________________________ 8

ЛИТЕРАТУРА______________________________________________________________ 10

ВВЕДЕНИЕ

Микроорганизмы начали использовать в производстве белковых продуктов задолго до возникновения микробиологии. Достаточно упомянуть всевозможные разновидности сыра, а также продукты, получаемые путем ферментации соевых бобов. И в первом, и во втором случае питательной основой является белок. При выработке этих продуктов при участии микробов происходит глубокое изменение свойств белоксодержащего сырья. В результате получают пищевые продукты, которые можно дольше хранить (сыр) или удобнее потреблять (соевый творог). Микробы играют роль в производстве некоторых мясных продуктов, предназначенных для хранения. Так, при изготовлении некоторых сортов колбасы используется кислотное брожение, обычно при участии комплекса молочнокислых бактерий. Образовавшаяся кислота способствует сохранности продукта и вносит вклад в формирование его особого вкуса.

Этим, пожалуй, и ограничивается использование микроорганизмов в переработке белков. Возможности современной биотехнологии в этих производствах невелики, за исключением сыроделия. Другое дело – выращивание и сбор микробной массы, перерабатываемой в пищевые продукты: здесь биотехнология может проявить себя во всей полноте.

По многим важным показателям биомасса микроорганизмов может обладать весьма высокой питательной ценностью. В немалой степени эта ценность определяется белками: у большинства видов они составляют значительную долю сухой массы клеток. На протяжении десятилетий активно обсуждаются и исследуются перспективы увеличения доли белка микроорганизмов в общем балансе производимого во всем мире белка.

Производство такого белка связано с крупномасштабным выращиванием определенных микроорганизмов, которые собирают и перерабатывают в пищевые продукты. Чтобы осуществить возможно более полное превращение субстрата в биомассу микробов, требуется многосторонний подход. Выращивание микробов в пищевых целях представляет интерес по двум причинам. Во-первых, они растут гораздо быстрее, чем растения и животные: время удвоения их численности измеряется часами. Это сокращает сроки, нужные для производства определенного количества пищи. Во-вторых, в зависимости от выращиваемых микроорганизмов в качестве субстратов могут использоваться разнообразные виды сырья. Что касается субстратов, то здесь можно идти по двум главным направлениям: перерабатывать низкокачественные бросовые продукты или ориентироваться на легкодоступные углеводы и получать за их счет микробную биомассу, содержащую высококачественный белок.

Культивирование на метаноле.
Основное преимущество этого субстрата – высокая чистота и отсутствие канцерогенных примесей, хорошая растворимость в воде, высокая летучесть, позволяющая легко удалять его остатки из готового продукта. Биомасса, полученная на метаноле, не содержит нежелательных примесей, что дает возможность исключить из технологической схемы стадии очистки.

Однако, необходимо учитывать при проведении процесса и такие особенности метанола, как горючесть и возможность образования взрывоопасных смесей с воздухом.

В качестве продуцентов, использующих метанол в конструктивном обмене, были изучены как дрожжевые, так и бактериальные штаммы. У дрожжей были рекомендованы в производство Candida boidinii, Hansenula polymorpha и Piehia pastoris, оптимальные условия для которых (t=34-37°C, рН=4,2-4,6) позволяют проводить процесс с экономическим коэффициентом усвоения субстрата до 0,40 при скорости протока в интервале 0,12-0,16 ч-1
. Среди бактериальных культур применяется Methylomonas clara, Pseudomonas rosea и др, способные развиваться при t=32-34°C, рН=6,0-6,4 с экономическим коэффициентом усвоения субстрата до 0,55 при скорости протока до 0,5 ч-1
.

Особенности процесса культивирования во многом обусловлены применяемым штаммом-продуцентом (дрожжи или бактерии) и условиями асептики. Ряд зарубежных фирм предлагает использовать дрожжевые штаммы и проводить выращивание в отсутствии строгой асептики. В этом случае технологический процесс протекает в ферментёре эжекционного типа производительностью 75 т АСВ в сутки, а удельный расход метанола составляет 2,5 т/т АСВ.

При культивировании дрожжей в асептических условиях рекомендованы аппараты колонного или эрлтфитного типа производительностью 75-100 т АСВ/сут при расходе метанола до 2,63 т/т АСВ. В том и другом случае процесс культивирования проводится одностадийно, без стадии «дозревания» с невысокой концентрацией субстрата (8-10 г/л).

В ряде стран в качестве продуцентов применяются бактериальные штаммы, процесс проводится в асептических условиях в ферментерах эрлифитного или струйного типов производительностью 100-300 т/сут и расходом метанола до 2,3 т/т АСВ. Ферментация осуществляется одностадийно при невысоких концентрациях спирта (до 12 г/л) с высокой степенью утилизации метанола.

Наиболее перспективным по своей конструкции является струйный ферментёр Института технической химии АН ГДР. Ферментёр объемом 1000 м3
состоит из секций, расположенных одна над другой и соединенных между собой шахтными переливами. Ферментационная среда из нижней секции ферментёра по напорному трубопроводу подается центробежными циркуляционными насосами в верхние шахтные переливы, через которые проходит в низлежащую секцию, подсасывая при этом воздух из газовода. Таким образом, среда протекает из секции в секцию, постоянно подсасывая новые порции воздуха. Падающие струи в шахтных переливах обеспечивают интенсивное аэрирование среды.

Питательная среда непрерывно подается в зону верхних шахтных переливов, а микробная суспензия отводится из выносных контуров. На стадии выделения для всех видов продуцентов предусмотрено отделение грануляции с целью получения готового продукта в гранулах.

Кормовые дрожжи, полученные на метаноле, имеют следующий процентный состав: сырой протеин 56-62; липиды 5-6; зола 7-11; влага 8-10; нуклеиновые кислоты 5-6. Бактериальная биомасса характеризуется следующим составом: сырой протеин 70-74; липиды 7-9; зола 8-10; нуклеиновые кислоты 10-13; влажность 8-10.

Кроме метанола, в качестве высококачественного сырья используют этанол, который имеет малую токсичность, хорошую растворимость в воде, небольшое количество примесей.

В качестве микроорганизмов – продуцентов белка на этиловом спирте как единственном источнике углерода могут использоваться дрожжи (Candida utilis, Sacharomyces lambica, Hansenula anomala, Acinetobacter calcoaceticus). Процесс культивирования проводят одностадийно в ферментерах с высокими массообменными характеристиками при концентрации этанола не более 15 г/л.

Дрожжи, выращенные на этаноле, содержат (%): сырого протеина 60-62; липидов 2-4; золы 8-10; влаги до 10.

Исторически одним из первых субстратов, используемых для получения кормовой биомассы, были гидролизаты растительных отходов, предгидрализаты и сульфитный щелок – отходы целлюлозно-бумажной промышленности. Интерес к углеводному сырью как основному возобновляемому источнику углерода значительно возрос еще и с экологической точки зрения, так как оно может служить основой для создания безотходной технологии переработки растительных продуктов.

В связи с тем, что гидролизаты представляют собой сложный субстрат, состоящий из смеси гексоз и пентоз, среди промышленных штаммов- продуцентов получили распространение виды дрожжей C.utilis, C.scottii и C.tropicalis, способные наряду с гексозами усваивать пентозы, а также переносить наличие фурфурола в среде.

Состав питательной среды в случае культивирования на углеводородном сырье значительно отличается от применяемого при выращивании микроорганизмов на углеводородном субстрате. В гидролизатах и сульфитных щелоках имеются в небольшом количестве практически все необходимые для роста дрожжей микроэлементы. Недостающие количества азота, фосфора и калия вводятся в виде об

mirznanii.com

Перспективы производства белков

Мы получаем белки, потребляя непереработанное мясо, рыбу, овощи и молочные продукты, например, молоко, сыр и йогурт. За последние несколько десятилетий развитие технологий переработки позволило выделить и очистить белки, которые обеспечивают определенные функциональные и пищевые характеристики. 

Белки, извлекаемые из белковых источников, включая растения, молочные продукты и побочные продукты переработки молока, используются для улучшения пищевой ценности широкого ассортимента повседневных продуктов питания и товаров для профилактики здоровья, а также вегетарианских, веганских продуктов и заменителей мяса. Белки также являются основными функциональными составляющими, которые способны улучшать структуру пищевых продуктов, а также оптимизировать вязкость, эмульгирование, стабильность, пенообразующие свойства и связывание жира в широком спектре пищевых продуктов. Производители продуктов питания могут выбирать для своих конечных продуктов белки с требуемой чистотой, функциональностью и органолептическими свойствами, в зависимости от того, как белок должен влиять на вкус, внешний вид и запах пищи. Рыночные источники указывают на то, что на мировой рынок белковых ингредиентов пищевых продуктов достигнет 29 млрд. долл. США к 2024 году3, тогда как мировой рынок растительных белков, оцененный в 8,35 млрд. долл. США в 2016 году, достигнет 14,22 млрд. долл. США к 2022 году4.  

Например, очищенные сывороточные белки являются ключевыми компонентами во многих типах белковых порошков, добавок и снэков, которые используются спортсменами для увеличения мышц, а также в пищевых продуктах для пациентов, которые восстанавливаются после болезни или у которых есть особые диетические требования. Белковые порошки также являются важными компонентами детских смесей, которые могут являться единственным источником питания ребенка в течение первых нескольких месяцев его жизни. 

Промышленность испытывает потребность в извлечении белков из разных источников. Внедрение многофункциональных эффективных технологий переработки позволяет обрабатывать широкий спектр сырья в пищевой промышленности в соответствии с местной сельскохозяйственной практикой и сезонной доступностью. Фермеры и производители знают о преимуществах культивирования и выращивания сельскохозяйственных культур, животных и новых источников белка, которые будут не только успешно произрастать и размножаться в местной среде и привычных сезонных климатических условиях, но и будут оказывать минимальное воздействие на земельные и водные ресурсы. Способность обрабатывать белки местного происхождения позволяет аналогичным образом свести к минимуму потери и снизить выбросы углекислого газа за счет снижения требований к транспортировке и обеспечению холодильной цепочки, а также способствует обеспечению доступа местных жителей к недорогим высококачественным пищевым продуктам. 

Сельскохозяйственный и промышленный сектора продолжают совместно работать над развитием технологий переработки пищевых продуктов, которые обеспечат эффективное и устойчивое производство белка. Фермерские хозяйства стремятся внедрять рациональные методы как для существующих, так и для новых источников белка, которые помогут защитить окружающую среду и снизить нашу зависимость от невозобновляемых ресурсов. При этом придание первостепенного значения устойчивости и рациональности так же важно для пищевой промышленности, как и для сельскохозяйственного сектора. Производители продуктов питания также стремятся снизить воздействие на окружающую среду и повысить эффективность, чтобы можно было оптимизировать производство с использованием ценного сырья. Специалисты по технологиям обработки и технике, в частности специалисты компании GEA, работают в тесном сотрудничестве с производителями продуктов питания в целях разработки и оптимизации технологических процессов и оборудования, которые позволят в максимальной степени увеличить производство, сводя к минимуму потребление воды и энергии, уменьшая отходы и потери и способствуя рециркуляции тепла и воды. 

GEA имеет многолетний опыт совместной работы с производителями молочных и растительных белков. Мы разрабатываем компоненты, универсальные технологии и комплексные интегрированные решения, которые используются производителями по всему миру для переработки белков из широкого спектра сырья, включая животные и молочные продукты, сельскохозяйственные культуры с высоким содержанием масла, например, соя, а также богатые крахмалом культуры, в частности, горох и картофель. Помимо разработки и оптимизации технологических процессов на основе главных источников белка, мы также активно используем наши знания в сфере промышленности, технологий и техники и ноу-хау для разработки решений следующего поколения для устойчивой переработки белков и белковых производных из таких источников, как насекомые, водоросли и грибы.  

www.gea.com

Производство протеина как бизнес. Технологии производства сывороточного протеина :: BusinessMan.ru

Бум производства протеина пришелся на 90-е годы, когда были доказаны и оглашены его высокие анаболические свойства и биодоступность. На сегодняшний день это самая востребованная биодобавка не только среди спортсменов, но и обычных людей. Протеин (англ. protein – белок) – это чистый белок, который легко и практически без остатка усваивается организмом. Это концентрированный порошок, который стимулирует внутриклеточный белковый синтез, необходимый для мышечного роста. При этом протеин используется даже для похудения. При белковой диете с использованием протеина происходит сжигание жира без вреда мышцам, человек не чувствует упадка сил, а метаболизм сохраняется на высоком уровне.

Виды протеина и тенденции рынка

Современные заводы по производству протеина выпускают четыре основных его вида:

  • Сывороточный (Whey Protein).
  • Соевый (Soy Protein).
  • Казеин (Casein protein).
  • Яичный протеин (Egg Protein).

Все это диетические, натуральные, 100% усваиваемые высокобелковые продукты из органического сырья с низким содержанием жиров и углеводов.

Последняя тенденция рынка белковых пищевых добавок – это объединение нескольких белковых препаратов в одном продукте. Один из вариантов — комбинирование сывороточного протеина с казеином. Последний медленно усваивается организмом и служит источником аминокислот для крови долгое время. Комбинация казеина и сывороточного протеина подходит как для дневного приема, так и перед сном. Это дает возможность избежать катаболизма, который может быть спровоцирован длительным перерывом между приемами пищи в связи со сном.

В последнее время при производстве протеина в конечный продукт на основе сывороточного белка все чаще стали добавлять соевый концентрат. Он усваивается также быстро и содержит большое количество глютамина, аргинина и аминокислот ВСАА (комплекс из трех аминокислот с разветвленными цепочками). Кроме этого, соевый протеин ускоряет восстановление.

Включение в состав белковых препаратов яичного протеина, который полностью лишен углеводов, повышает активность процессов секреции анаболических гормонов.

И все же, проведя ряд сравнительных анализов, исследователи определили лучшим белковым продуктом для стимулирования внутриклеточного белкового синтеза и роста мышц сывороточный протеин.

Сывороточный протеин

Это концентрированный белок, который выделяют из молочной сыворотки. В состав входят альфа-лактальбумин и бета-лактоглобулин, глобулярные белки и около 8 % сывороточного альбумина. Проще говоря, этот пищевой концентрат — «полноценный» белок, в котором также присутствуют в большом количестве необходимые организму аминокислоты – валин, лейцин и изолейцин (комплекс ВСАА). Это важные «строительные» блоки мышечной ткани, без которых невозможен белковый синтез и мышечный рост.

Сывороточный протеин исключительно быстро, легко и без остатка усваивается организмом. Этот продукт соответствует высшему коэффициенту биологической активности – показателю, определяющему количество усвоенного протеина из съеденного объема. Медицинские исследования доказали общую полезность сывороточного протеина для здоровья. Его употребление стимулирует сопротивляемость организма некоторым раковым заболеваниям, нормализует кровяное давление, укрепляет иммунную систему.

Производство

Жидкая сыворотка относится к побочным продуктам производства, связанного со свертыванием молока (напр. сыроварение). Содержание в сыворотке белка ничтожно мало, и долгое время этот сопутствующий продукт попросту относили к отходам и сливали в канализацию. Только спустя многие десятилетия развитие технологий позволило наладить производство протеина на оборудовании, позволяющем выделять протеин из сыворотки в промышленных количествах.

Технология выделения белка из сыворотки включает несколько этапов. Изначально осуществляется процесс сворачивания молока, происходит отделение творога и сыворотки. Содержание минералов, лактозы, лактальбумина в полученной первоначальной сыворотке не превышает 5 %. На следующем этапе жидкий продукт пастеризуется и фильтруется. Далее отфильтрованный сывороточный протеин концентрируется и сушится. Получаемый на выходе продукт содержит от 60 до 97 % белка. Производство сывороточного протеина — достаточно сложный процесс, который не возможен в домашних условиях.

Концентрат сывороточного протеина (WPC)

При выделении любого вида протеина фильтрация является неотъемлемой и одной из важнейших процедур. При производстве протеина сыворотка пропускается через определенное сито, на котором задерживаются белковые фракции.

Первой технологией получения концентрированного белкового продукта была фильтрация сыворотки через керамические мембраны с очень мелкими отверстиями. Несмотря на невообразимо малый размер, через такие отверстия свободно проходят молекулы жиров и углеводов, но оседают более крупные по размеру белковые фракции. Собранный с мембраны сывороточный протеин отправлялся под высокую температуру для высыхания до состояния белкового порошка.

Недостатком концентрата сывороточного протеина является чистота фильтрации. Технически невозможно получать отверстия в мембране одинакового сечения, поэтому оседает смешанная масса, в которой доля протеина 35-8 5%, притом что честные производители поддерживают содержание протеина в своих продуктах на уровне не менее 70-80 %. Как следствие, концентрат не является самым чистым белковым продуктом, в его составе могут содержаться излишние углеводы и жиры, что может привести к избыточному газообразованию в организме. Сывороточный концентрат — хороший выход при ограниченном финансировании производства, потому самый дешевый на рынке. Белковые фракции протеина, полученного по данной технологии, сохраняют все свои полезные свойства.

Изолят сывороточного протеина (WPI)

Изолят протеина – значительно более чистый продукт. Его получают путем продолжительной фильтрации, называемой также ионным обменом. В результате получается сухая масса с содержанием белковой фракции до 95 %. Сывороточный изолят практически не содержит жиров и углеводной лактозы, идеален для приема. Очень часто производители используют в готовом продукте смесь изолята и концентрата, что позволяет значительно удешевить готовую смесь, но при этом содержание сывороточного белка не превышает 70 %. Специалисты рекомендуют внимательно читать информацию на этикетке и выбирать продукт, в котором главным компонентом является изолят.

Гидролизат сывороточного белка (WPH)

Производство протеина методом гидролиза, при котором крупные белковые молекулы делятся на отдельные фрагменты. Подобный процесс происходит в пищеварительном тракте и отнимает у организма немало энергии. Гидролизат белка снимает такую необходимость в организме, получаемый протеин усваивается немедленно. Некоторые эксперты считают, что при восстановлении мышц необходимо принимать только гидролизат, хотя стоит учитывать, что это наиболее дорогая разновидность протеина. Стоит отметить, что возможности современного оборудования позволяют настраивать гидролиз таким образом, что содержание мелких белковых фракций может быть лишь 3-50 %. Это может значительно удешевить себестоимость продукта. При малом содержании мелких фрагментов такой протеин горчит.

Методы фильтрации

Производство сывороточного протеина, прежде всего, предусматривает фильтрацию молочной сыворотки от лактозы и жиров по одной из следующих технологий:

  • Ультрафильтрация – пропускание сыворотки через крайне мелкие отверстия керамической мембраны под большим давлением. На мембране оседают большие белковые фракции, которые отправляются на дальнейшую переработку.
  • Микрофильтрация – метод дополнительной фильтрации полученной в результате ультрафильтрации белковой массы при низкой температуре. Благодаря микрофильтрации удается дополнительно отсеять молекулы жира, снизив их содержание в белковой массе от 1 % и более.
  • Ионный обмен. Для отделения молекул белка от лактозы, жира и других компонентов в жидкую сыворотку вводят заряженные ионы, которые связываются только с протеином. Далее, используя разность потенциалов, через ионы выделяют белок. К недостаткам такого метода фильтрации относятся: потеря части полезных фракций и попадание промежуточных химикатов в готовый продукт.
  • Гидролиз – химический процесс расщепления крупных молекул белка на мелкие части, которые называются пептидами и быстро усваиваются организмом.

Протеин российского производства

Российские образцы протеина появились в продаже относительно недавно. До этого времени, в том числе и Советском Союзе, источниками питательных веществ для спортсменов были в основном натуральные продукты: яйца, молоко, творог, рыба, говядина, злаковые и бобовые. При этом их спортивные показатели достигали иногда легендарного уровня.

Активное производство протеина в России началось с повышением лояльности в требованиях к качеству продуктов питания, в том числе и спортивного питания, употребление которого стало стремительно набирать обороты. Сейчас протеин отечественного производства постепенно набирает популярность и на мировом уровне. Среди самых известных брендов: «Геркулес», ATech, PureProtein, Ironman, LadyFitness. Возможно, в недалеком будущем российские бренды будут конкурировать с такими известными и старейшими корпорациями по производству протеина, как Optimum Nutrition.

businessman.ru

Производство грибного белка. Производство цианобактерий

Производство грибного белка (микопротеина)

Микопротеин — это пищевой продукт, состоящий в основном из мицелия гриба. При его производстве используется штамм Fusarium graminearum, выделенный из почвы. Микопротеин производят сегодня на опытной установке методом непрерывного выращивания. В качестве субстрата используется глюкоза и другие питательные вещества, а источниками азота служат аммиак и аммонийные соли. После завершения стадии ферментации культуру подвергают термообработке для уменьшения содержания рибонуклеиновой кислоты, а затем отделяют мицелий методом вакуумного фильтрования.

Если сопоставить производство микопротеина с процессом синтеза белков животных, то выявится ряд его преимуществ.

Помимо того, что здесь выше скорость роста, превращение субстрата в белок происходит несравненно эффективнее, чем при усвоении пищи домашними животными. Это отражено в табл. 4.3.

Нелишне напомнить, что корма для животных должны содержать некоторое количество белка (до 15-20 %), в зависимости от вида животных и способа их содержания. Положительным фактором является и волокнистое строение выращенной культуры; текстура массы мицелия близка к таковой у естественных продуктов, поэтому у продукта может быть имитирована текстура мяса, а за счет добавок — его вкус и цвет. Плотность продукта зависит от длины гифов выращенного гриба, которая определяется скоростью роста.

Таблица. 4.3. Эффективность конверсии при образовании белка для различных животных и Fusarium graminearum

После проведения всесторонних исследований питательной ценности и безвредности микопротеина Министерство сельского хозяйства, рыболовства и пищевых продуктов дало разрешение на его продажу в Англии. Содержание питательных веществ в нем указано в табл. 4.4 .
Таблица 4.4. Средний состав микопротеина и сравнение его с составом говядины


Производство цианобактерий

В 1521 г. испанец Бернал Диас дель Кастильо в своих записках упомянул о галетах под названием «текуитлатл», которые продавались на базаре в Мехико. Они были необыкновенного синего или зеленого цвета, очень вкусные и питательные.

Оказалось, что они изготовлены из сине-зеленых водорослей озера Текскоко (неподалеку от Мехико). Пласты этих водорослей извлекали из озера, сушили слоями и изготовляли галеты. Озеро Текскоко примечательно тем, что вода в нем имеет сильно щелочную реакцию (вплоть до pH 11).

В настоящее время известно, что эти сине-зеленые водоросли представляют собой цианобактерии Spirulina platensis.

В 1964 г. бельгийский ботаник Леонар, участвуя в экспедиции через Сахару, обратил внимание на сине-зеленые лепешки, которые употребляли в пищу жители в районе озера Чад и прудов, его окружающих. По возвращении в Бельгию он проанализировал лепешки (местные жители называли их «дахэ») и обнаружил в них высокое содержание белка (до 70 % сухого веса), больше, чем в соевых бобах. Примерный состав (в %): белок 65, углеводы 19, липиды 4, волокна 3, пигменты 6, зола 3.

Состав белковых аминокислот также оказался исключительно сбалансированным: концентрация метионина, триптофана и других аминокислот была такой же (если не выше), как в казеине. Однако в белке Spirulina оказалось мало лизина (клеточная стенка этих прокариот имеет не такой состав, как у других бактерий, например дрожжей), поэтому этот белок легко подвергается перевариванию.

При скармливании животным пищи, весь белок которой состоял из Spirulina, они хорошо развивались, имели нормальную скорость роста; не наблюдалось никаких аномалий или патологических эффектов. Другими словами, белок сине-зеленых водорослей оказался идеальным диетическим продуктом как для питания животных, так и человека. Еще одной особенностью Spirulina является ее чрезвычайно быстрый рост: за 3-4 дня ее биомасса удваивается.

Франция, Италия, Япония, Мексика, США интенсивно разрабатывают технологии производства продуктов питания на основе цианобактерий. В Мексике рядом с озером Текскоко в 1973 г. была организована компания по выпуску муки.

Поверхность пруда составила примерно 900 га; сбор проводили круглые сутки. После фильтрации суспензия высушивалась горячим воздухом и превращалась в муку. В первый год было произведено 150 т муки, в 1982 г. — 1000 т.

Главными импортерами мексиканской муки являются Япония, США, европейские страны. Продукция выпускается в виде таблеток и гранул, в которые по договоренности с потребителями добавляются витамины А (ретинол) и С (аскорбиновая кислота). На их основе изготовляются продукты диетического питания.

Ежегодные урожаи Spirulina в десять раз выше, чем у пшеницы, а содержание белка — более чем в десять раз выше, чем у соевых бобов (табл. 4.5).

Для сравнения можно привести таблицу, в которой отражены данные продуктивности основных культур, содержащих белок, и такие же данные для Spirulina.

Таблица 4.5. Сравнение продуктивности основных белоксодержащих культур и Spirulina

Генетическое усовершенствование штаммов Spirulina значительно повысило урожаи.

Еще одно направление использования цианобактерий: пигменты, полученные из Spirulina, содержат каротиноидные пигменты синего и зеленого цветов, редко встречающиеся в естественных продуктах. Они пользуются большим спросом на рынке как красители для пищевой и парфюмерной промышленности, поскольку абсолютно безвредны и имеют очень интенсивную окраску.

В Японии из цианобактерий разработан специальный корм для декоративных рыбок, который придает им необычайную окраску. На Тайване в одном из птицеводческих хозяйств было обнаружено, что при кормлении кур кормом на основе белка цианобактерий желток приобретает интенсивную желто-оранжевую окраску. Продажа яиц по более высокой цене обеспечила хозяйству высокую конкурентоспособность и рентабельность.

В Узбекистане, недалеко от г. Самарканда в четырехстах искусственных водоемах выращиваются цианобактерии, с успехом использующиеся на корм скоту, домашней птице и тутовому шелкопряду, а также для удобрения хлопковых полей. Лимитирующим фактором является довольно низкая температура зимой (2-5 С).

В настоящее время многими научными учреждениями РФ и за рубежом проведена успешная разработка методов получения кормового белка из различных отходов. Некоторые из них могут быть использованы для промышленного получения белка, другие — в хозяйственных условиях.

Многие микроорганизмы могут быть использованы для получения незаменимых кормовых аминокислот и витаминов. Только правильное сочетание всех компонентов корма дает наилучший результат, а недостаток хотя бы одного из них снижает эффективность остальных.

Л.В. Тимощенко, М.В. Чубик

medbe.ru

Производство белка | Рефераты KM.RU

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ
СЫКТЫВКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра ботаники
Реферат на тему:
ПРОИЗВОДСТВО БЕЛКА

Исполнитель: студентка 243 гр.

Аниськина Мария

Преподаватель: к.б.н., доцент,

Шергина Н.Н.

Сыктывкар 2000

СОДЕРЖАНИЕ_______ 2

ВВЕДЕНИЕ__________ 3

1.Белок одноклеточных организмов 4

1.1.Получение микробного белка на низших спиртах__ 4

1.2. Получение белковых веществ на углеводном сырье____ 7

2.Грибной белок (микопротеин)________ 8

ЛИТЕРАТУРА_______ 10

ВВЕДЕНИЕ

Микроорганизмы начали использовать в производстве белковых продуктов задолго до возникновения микробиологии. Достаточно упомянуть всевозможные
разновидности сыра, а также продукты, получаемые путем ферментации соевых бобов. И в первом, и во втором случае питательной основой является белок. При
выработке этих продуктов при участии микробов происходит глубокое изменение свойств белоксодержащего сырья. В результате получают пищевые продукты, которые
можно дольше хранить (сыр) или удобнее потреблять (соевый творог). Микробы играют роль в производстве некоторых мясных продуктов, предназначенных для
хранения. Так, при изготовлении некоторых сортов колбасы используется кислотное брожение, обычно при участии комплекса молочнокислых бактерий. Образовавшаяся
кислота способствует сохранности продукта и вносит вклад в формирование его особого вкуса.

Этим, пожалуй, и ограничивается использование микроорганизмов в переработке белков. Возможности современной биотехнологии в
этих производствах невелики, за исключением сыроделия. Другое дело – выращивание и сбор микробной массы, перерабатываемой в пищевые продукты: здесь
биотехнология может проявить себя во всей полноте.

По многим важным показателям биомасса микроорганизмов может обладать весьма высокой питательной ценностью. В немалой степени эта
ценность определяется белками: у большинства видов они составляют значительную долю сухой массы клеток. На протяжении десятилетий активно обсуждаются и
исследуются перспективы увеличения доли белка микроорганизмов в общем балансе производимого во всем мире белка.

Производство такого белка связано с крупномасштабным выращиванием определенных микроорганизмов, которые собирают и перерабатывают в
пищевые продукты. Чтобы осуществить возможно более полное превращение субстрата в биомассу микробов, требуется многосторонний подход. Выращивание микробов в
пищевых целях представляет интерес по двум причинам. Во-первых, они растут гораздо быстрее, чем растения и животные: время удвоения их численности
измеряется часами. Это сокращает сроки, нужные для производства определенного количества пищи. Во-вторых, в зависимости от выращиваемых микроорганизмов в
качестве субстратов могут использоваться разнообразные виды сырья. Что касается субстратов, то здесь можно идти по двум главным направлениям: перерабатывать
низкокачественные бросовые продукты или ориентироваться на легкодоступные углеводы и получать за их счет микробную биомассу, содержащую
высококачественный белок.

Культивирование на метаноле. Основное преимущество этого субстрата – высокая
чистота и отсутствие канцерогенных примесей, хорошая растворимость в воде, высокая летучесть, позволяющая легко удалять его остатки из готового продукта.
Биомасса, полученная на метаноле, не содержит нежелательных примесей, что дает возможность исключить из технологической схемы стадии очистки.

Однако, необходимо учитывать при проведении процесса и такие особенности метанола, как горючесть и возможность образования взрывоопасных
смесей с воздухом.

В качестве продуцентов, использующих метанол в конструктивном обмене, были изучены как дрожжевые, так и бактериальные штаммы. У дрожжей были
рекомендованы в производство Candida boidinii, Hansenula polymorpha и Piehia pastoris, оптимальные условия для которых (t=34-37°C, рН=4,2-4,6) позволяют проводить процесс с
экономическим коэффициентом усвоения субстрата до 0,40 при скорости протока в интервале 0,12-0,16 ч-1. Среди бактериальных культур применяется Methylomonas clara,
Pseudomonas rosea и др, способные развиваться при t=32-34°C, рН=6,0-6,4 с экономическим коэффициентом усвоения субстрата до
0,55 при скорости протока до 0,5 ч-1.

Особенности процесса культивирования во многом обусловлены применяемым штаммом-продуцентом (дрожжи или бактерии) и условиями асептики. Ряд зарубежных
фирм предлагает использовать дрожжевые штаммы и проводить выращивание в отсутствии строгой асептики. В этом случае технологический процесс протекает в
ферментёре эжекционного типа производительностью 75 т АСВ в сутки, а удельный расход метанола составляет 2,5 т/т АСВ.

При культивировании дрожжей в асептических условиях рекомендованы аппараты колонного или эрлтфитного типа производительностью 75-100 т АСВ/сут при расходе метанола до 2,63 т/т АСВ. В том и другом случае процесс культивирования
проводится одностадийно, без стадии «дозревания» с невысокой концентрацией субстрата (8-10 г/л).

В ряде стран в качестве продуцентов применяются бактериальные штаммы, процесс проводится в асептических условиях в ферментерах эрлифитного или
струйного типов производительностью 100-300 т/сут и расходом метанола до 2,3 т/т АСВ. Ферментация осуществляется одностадийно при невысоких концентрациях
спирта (до 12 г/л) с высокой степенью утилизации метанола.

Наиболее перспективным по своей конструкции является струйный ферментёр Института технической химии АН ГДР. Ферментёр объемом 1000м3 состоит
из секций, расположенных одна над другой и соединенных между собой шахтными переливами. Ферментационная среда из нижней секции ферментёра по напорному
трубопроводу подается центробежными циркуляционными насосами в верхние шахтные переливы, через которые проходит в низлежащую секцию, подсасывая при этом
воздух из газовода. Таким образом, среда протекает из секции в секцию, постоянно подсасывая новые порции воздуха. Падающие струи в шахтных переливах
обеспечивают интенсивное аэрирование среды.

Питательная среда непрерывно подается в зону верхних шахтных переливов, а микробная суспензия отводится из выносных контуров. На стадии выделения для
всех видов продуцентов предусмотрено отделение грануляции с целью получения готового продукта в гранулах.

Кормовые дрожжи, полученные на метаноле, имеют следующий процентный состав: сырой протеин 56-62; липиды 5-6; зола 7-11; влага 8-10; нуклеиновые
кислоты 5-6. Бактериальная биомасса характеризуется следующим составом: сырой протеин 70-74; липиды 7-9; зола 8-10; нуклеиновые кислоты 10-13; влажность
8-10.

Кроме метанола, в качестве высококачественного сырья используют этанол, который имеет малую токсичность, хорошую растворимость в воде, небольшое
количество примесей.

В качестве микроорганизмов – продуцентов белка на этиловом спирте как единственном источнике углерода могут использоваться дрожжи
(Candida
utilis, Sacharomyces lambica, Hansenula anomala, Acinetobacter calcoaceticus). Процесс культивирования проводят одностадийно в
ферментерах с высокими массообменными характеристиками при концентрации этанола не более 15 г/л.

Дрожжи, выращенные на этаноле, содержат (%): сырого протеина   60-62; липидов 2-4; золы
8-10; влаги до 10.

Исторически одним из первых субстратов, используемых для получения кормовой биомассы, были гидролизаты растительных отходов,
предгидрализаты и сульфитный щелок – отходы целлюлозно-бумажной промышленности. Интерес к углеводному сырью как основному возобновляемому источнику углерода
значительно возрос еще и с экологической точки зрения, так как оно может служить основой для создания безотходной технологии переработки растительных
продуктов.

В связи с тем, что гидролизаты представляют собой сложный субстрат, состоящий из смеси гексоз и пентоз, среди промышленных
штаммов- продуцентов получили распространение виды дрожжей C.utilis, C.scottii и C.tropicalis, способные наряду с гексозами
усваивать пентозы, а также переносить наличие фурфурола в среде.

Состав питательной среды в случае культивирования на углеводородном сырье значительно отличается от применяемого при выращивании
микроорганизмов на углеводородном субстрате. В гидролизатах и сульфитных щелоках имеются в небольшом количестве практически все необходимые для роста
дрожжей микроэлементы. Недостающие количества азота, фосфора и калия вводятся в виде общего раствора солей аммофоса, хлорида калия и сульфата аммония.

Ферментация осуществляется в эрлифтных аппаратах конструкции Лефрансуа-Марийе объемом 320 и 600 м3. Процесс
культивирования дрожжей осуществляется в непрерывном режиме при рН 4,2-4,6. Оптимальная температура от 30 до 40°С.

Кормовые дрожжи, полученные при культивировании на гидролизатах растительного сырья и сульфитных щелоках, имеют следующий состав
(%): белок 43-58; липиды 2,3-3,0; углеводы 11-23; зола – до 11; влажность – не более 10.

Одним из перспективных субстратов в производстве кормовой биомассы являются гидролизаты торфа, имеющие в своем составе большое
количество легкоусвояемых моносахаров и органических кислот. Дополнительно в состав питательной среды вводятся лишь небольшие количества суперфосфата и
хлорида калия. Источником азота служит аммиачная вода. По качеству кормовая биомасса, полученная на гидролизатах торфа, превосходит дрожжи, выращенные на
отходах растительного сырья.

Микопротеин – это пищевой продукт, состоящий в основном из мицелия гриба. При его производстве используется штамм Fusarium
graminearum, выделенный из почвы. Микопротеин производят сегодня на опытной установке методом непрерывного
выращивания. В качестве субстрата используется глюкоза и другие питательные вещества, а источниками азота служат аммиак и аммонийные соли. После завершения
стадии ферментации культуру подвергают термообработке для уменьшения содержания рибонуклеиновой кислоты, а затем отделяют мицелий методом вакуумного
фильтрования.

Если сопоставить производство микопротеина с процессом синтеза белков животных, то выявится ряд его преимуществ. Помимо того, что
здесь выше скорость роста, превращение субстрата в белок происходит несравненно эффективнее, чем при усвоении пищи домашними животными. Это отражено в таблице
1.

Нелишне напомнить, что корма для животных должны содержать некоторое количество белка, до 15-20% в зависимости от вида животных
и способа их содержания. Положительным фактором является и волокнистое строение выращенной культуры; текстура массы мицелия близка к таковой у естественных
продуктов, поэтому у продукта может быть имитирована текстура мяса, а за счет добавок – его вкус и цвет. Плотность продукта зависит от длины гиф выращенного
гриба, которая определяется скоростью роста.

Таблица 1. Эффективность конверсии при образовании белка для различных животных и Fusarium graminearum.

Исходный продукт Продукция
Белок, г Общая, г
Корова 1 кг корма 14 68 говядины
Свинья 1 кг корма 41 200 свинины
Курица 1 кг корма 49 240 мяса
Fusarium graminearum 1 кг углеводов + неорганический азот 136 1080 клеточной массы

После проведения всесторонних исследований питательной ценности и безвредности микопротеина министерство сельского хозяйства,
рыболовства и пищевых продуктов дало разрешение на его продажу в Англии. Содержание питательных веществ в нем указано в таблице 2.

Таблица 2. Средний состав микопротеина и сравнение его с составом говядины.

Компоненты Состав, % (на сухой вес)
микопротеин бифштекс
Белки 47 68
Жиры 14 30
Пищевые волокна 25 Следы
Углеводы 10 0
Зола 3 2
РНК 1 Следы

1. Биотехнология: Принципы и применение. Под ред. И.Хиггенса и др. Москва: «Мир», 1988 г.

2. Биотехнология. Производство белковых веществ. В.А.Быков, М.Н.Манаков и др. Москва «Высшая школа», 1987 г.

3. Воробьева А.И. Промышленная микробиология. Изд. Московского университета, 1989 г.

www.km.ru

Производство подсолнечного белка

Выбор культуры-источника белка определяется региональными особенностями. В странах Азии — это соя, в Африке — арахис. Растительный белок получают также из рапса, кунжута, сафлора. В нашей стране, конечно, из приоритетной культуры — подсолнечника.

Содержание белка в подсолнечнике зависит от многих факторов, в частности, погодных условий, периода вегетации, почв и агротехнологических мероприятий выращивания. Большое значение имеют особенности генотипа. Это означает, что есть границы, за которые процент содержания белка в этом сорте, гибриде, селекционной линии не выходит при любых условиях выращивания. Среди старых сортов-популяций подсолнечника были такие, в которых содержание белка в ядрах семян в среднем равен 16,5% (от массы сухого вещества ядра), а были с содержанием белка 32,0%. Среди современных селекционных номеров размах варьирования белка еще больше.

Кроме ядра семян белок содержится в шелухе, вегетативных органах подсолнечного растения (листья, стебель, корзина) и т.д., что определяет их питательную ценность в животноводстве. Силосный подсолнечник (есть и такие сорта специального назначения) обеспечивает до 15% протеина в зеленой массе (в пересчете на сухое вещество). Даже сухие корзинки и стебли можно перемолоть в муку и получить корм с содержанием чистого протеина выше 40 г на 1 кг муки.

Растительный белок характеризуется несбалансированностью по аминокислотному составу и дефицитом так называемых незаменимых аминокислот, то есть тех, которые не синтезируются, как утверждают врачи, животным организмом. Всего таких аминокислот для взрослого человека насчитывается восемь — и все они находятся в семечках. Очень нужную для кормления незаменимую аминокислоту лизин подсолнечник содержит в большем количестве, чем зерновые культуры — до 4,1 г на 100 г белка (в пшенице — 2,7 г), но в меньшей, чем белок бобовых культур (соя — до 7 г ). Поэтому все же подсолнечный белок имеет дефицит лизина. Однако к несомненным преимуществам подсолнечного белка принадлежит высокая перевариваемость ферментами желудочно-кишечного тракта благодаря высокому содержанию специфической для подсолнечника формы солерастворимого белка (гелиантинина). Итак, подсолнечный белок не вызывает вздутие, изжоги и нарушений работы желудка.


Получение пищевого белка

В нашей стране подсолнечный шрот является потенциальным лидером кормовых ингредиентов. Он дешевле других видов шрота, производится в количестве, намного превышающем объемы внутреннего потребления — на уровне 4,4 млн тонн в год. В отличие от шрота, скажем, некоторых сортов рапса (имеющих высокое содержание глюкозинолатов), арахисового шрота (может иметь высокое содержание афлатоксинов), подсолнечный шрот не содержит токсичных веществ природного происхождения. Дефицит лизина в подсолнечном шроте можно преодолеть, в частности, добавлением в корм кристаллического лизина. Кстати, увеличение в подсолнечном семени общего содержания белка, например селекционным путем, в то же время приведет к увеличению относительного содержания именно незаменимых кислот, в частности лизина.

Подсолнечный шрот — объект экспорта, однако продавать за границу продукт, изготовленный из шрота, а именно чистый белок, — гораздо выгоднее и перспективнее. Сдерживает это направление отсутствие отлаженного процесса производства белка из шрота на современных перерабатывающих предприятиях.

Получение пищевого подсолнечного белка затруднено наличием в шроте так называемой хлорогеновой кислоты — соединения, которое при тепловой обработке вызывает потемнение продуктов. Однако современные технологии позволяют удалять хлорогеновую кислота на стадии переработки, разработаны также специальные низкотемпературные технологии обработки шрота. К тому же различные генотипы подсолнечника могут иметь повышенное или пониженное содержание хлорогеновой кислоты, как и содержание белка.


Сферы применения подсолнечного белка

Сейчас растет спрос на вегетарианскую пищу, все больше людей ищут альтернативные мясным продукты питания. В магазинах здоровой пищи увеличивается ассортимент продукции. Подсолнечный белок является новым сырьем, который может удовлетворить людей, страдающих от аллергии. С целью его обогащения можно добавлять к таким продуктам, как хлебобулочные изделия, мясопродукты и тому подобное. По установленным Национальным стандартом органолептическим требованиям к белку семян (однородный порошок светлого цвета, без посторонних привкусов и запахов) и его физико-химическим показателям, он хорошо подходит как ингредиент соусов для салатов, спредов, пирожков. В стране, где основным продуктом питания считается хлеб из зерновых культур, добавление белкового муки при выпечке — удобный способ обогащения рациона. В странах ЕС считают, что подсолнечный белок является очень хорошей альтернативой всех растительных белков, которые используют в пищевой промышленности. Впрочем, потенциал его использования раскрыт далеко не полностью, поэтому ученые работают над дальнейшими модификациями для специальных применений. Для многих производителей решающим является и то, что белок подсолнечника имеет самостоятельный приятный вкус.

Традиционным для нашей страны является использование подсолнечного ядра. Визит в ближайший супермаркет показал, что семена подсолнечника есть на полках в таких видах:

  • целое семя не обрушенное — сырое и обжаренное;
  • целое ядро подсолнечника — сырое и обжаренное, как вариант — с добавлением соли или сахара;
  • халва;
  • козинаки;
  • драже в сахарной или шоколадной глазури;
  • присыпка для хлебобулочных и кондитерских изделий;
  • компонент хлеба «здорового питания» в целом виде и в виде муки;
  • компонент мюсли.

Сторонники вегетарианского питания доказывают, что семена подсолнечника надо употреблять проросшие в воде.

А вот диетологи говорят, что 100 г семян содержит 500-600 ккал! В несколько раз больше, чем в хлебе, мясе. Тем, в чьи планы не входит поправиться, надо это учитывать.


Вкус «рухнувшего» ядра подсолнечника

Понятно, что белок можно получить из семян любого подсолнечника, в частности, из высокомасличных. Однако это нецелесообразно не только из-за низкого содержания белка, но и по причине анатомического построения высокомасличных семянок, а именно плотного прикрепления шелухи к ядру и низкой способности к обрушению. А вот семена кондитерского подсолнечника с высокой массой 1000 семян и с повышенным содержанием белка имеют воздушную прослойку между ядром и шелухой, что обеспечивает высокую способность к обрушению. После обрушения образуется до восьми фракций так называемой «рушанки». У кондитерских образцов выход основной фракции — целого ядра — превышает 70%, а это экономически выгодно.

Установленные Национальным стандартом требования к ядрам семечек четко прописывают: массовая доля шелухи в упавшем ядре не должна превышать 1,5%. Иначе такое ядро можно будет использовать только в птицеводстве — остатки шелухи могут навредить желудочно-кишечному тракту человека. Также стандартом установлены требования к органолептическим и физико-химическим показателям рухнувшего ядра семян подсолнечника. Однако в стандартах нет показателей крупности, содержания белка или жира и других химических составляющих подсолнечного семени, зато есть показатель «присутствие вкуса». Чем же оно определяется, это «присутствие вкуса»? Ведь покупатель быстро разберется, где семечки «вкусные», а где – «не вкусные».

Когда нет стандартизированных показателей «присутствия вкуса», остается дегустация на «зуб» и на «язык». Вкус семян ядра определяют многие факторы. Современные технологии жарки предусматривают применение специального оборудования (однако у бабушки с рынка — собственная технология, спросишь — может и не рассказать, но семена не менее вкусные). Однако и здесь играет роль подсолнечный белок. Так, продолжительность сохранения ядра после обрушения и жарки зависит от доступа кислорода воздуха и от содержания белка (до обрушения семена могут храниться длительное время без потери вкусовых качеств, ведь шелуха подсолнечника надежно защищает ядро от контакта с воздухом). Более высокое содержание масла и более низкое содержание белка — меньшая продолжительность сохранения обрушенных семян из-за того, что в процессе хранения химическим изменениям прежде всего подвергаются жиры, а уже потом — белки.

В результате образуется прогорклый привкус. Производители учитывают это и способны обработать жареные семечки консервантами, а это дополнительный риск для здоровья. Современная селекция достигла в этом направлении значительных успехов. Выведены гибриды с повышенным содержанием в масле природных антиоксидантов, замедляющих образование токсичных и горьких веществ в процессе хранения обрушенных семян или готового масла, а именно содержат олеиновую кислоту в количестве до 87% от суммы жирных кислот, а также бета и гамма-токоферолы.

Во время жарки происходит денатурация жиров, появляется запах жареного масла. Поэтому кондитеры предпочитают не вводить высокомасличные смеси в продукт. Например, при изготовлении кондитерских изделий: здесь посторонний запах говорит о низком качестве.


Кондитерский сорт подсолнечника вместо лузального

Кондитерский подсолнечник появился на наших полях относительно недавно. Он пришел на замену старым сортам лузального типа. Семена лузального и кондитерского типов отличаются по комплексу показателей и по содержанию белка в частности. Есть мнение, что соотношение 1 часть белка на 2-2,5 части масла в семени позволяет совместить отличные вкусовые качества и замедляет прогорание (подсолнечник для кондитерских целей). Чем больше белка (1 часть белка на 1,5 части масла) – тем хуже вкус, может появиться негативный привкус, напоминающий горох. Однако чаще всего такие семена крупные, их можно использовать для лузальных целей. Чем меньше белка (1 часть белка на 2,7 и более частей масла) — большая вероятность появления привкуса горечи.

Для частичной замены ореховой массы при изготовлении конфет и для удешевления конечного продукта рекомендуется использовать смесь орехов и семечек с содержанием белка в ядре до 32%. Низкотемпературные технологии позволяют подмешивать ядро высокобелкового подсолнечника в количестве до 50% массы смеси, без нарушений вкуса и запаха конечного продукта.

Селекционно-современные сорта и гибриды кондитерского типа, которые получают все большее распространение в нашей и других странах, ведут свою родословную из промежуточных между масляными и лузальными формами подсолнечника. Они обладают замечательной способностью — при поджаривании их шелуха растрескивается, что позволяет легко снимать ее пальцами.

Достичь лучших качеств кондитерского семени можно, правильного выбирая сорт или гибрид подсолнечника. Еще в середине прошлого века было установлено, что содержание белка — реальный объект селекционных программ, а увеличение содержания белка до 28% в ядре при сохранении оптимального содержания масла — конкретная задача, над которой путем специальных манипуляций работают селекционеры. Химический состав семян современных кондитерских гибридов позволяет проводить экономически выгодную многофазную переработку семян подсолнечника, которая предусматривает получение высококачественного масла холодным прессованием, дальнейшую экстракцию масла из остатков и переработку этих остатков на высококачественный белок. Возможен и другой путь, а именно — выделение крупной фракции семян для потребления в целом виде и дальнейшее использование мелких фракций в качестве сырья для производства масла.

Группа подсолнечника для кондитерского и лузального использования в Государственном реестре сортов растений, пригодных для распространения в 2016 году, насчитывает 17 сортов и гибридов, из них семь — отечественной селекции. Немного, если сравнить с общим количеством сортов и гибридов подсолнечника в Реестре (более 600). Недавно в нашей стране вообще не было кондитерских гибридов подсолнечника, только сорта. Поэтому и сеют для кондитерских целей устаревшие сорта, которые уступают современным гибридам по урожайности и многим другим признакам.


Нюансы технологии

Выращивание кондитерского подсолнечника экономически выгоднее выращивания масличных сортов из-за высокой закупочной цены. Однако получить большие, и, главное, вкусные семечки удается не каждому и не каждый год.

Технология выращивания кондитерского белкового (точнее белково-масличного) подсолнечника отличается от выращивания подсолнечника масличного по отдельным элементам. Содержание белка увеличивается под влиянием условий выращивания, которые обеспечивают растения азотом — строительным материалом белка (увеличение площади питания, внесение азотных удобрений). Разрежением посева можно увеличить содержание белка в ядре семени на 2-4%, но в основном оно нужно для получения большой массы 1000 семян. Так, для современных гибридов кондитерского направления рекомендованной (при сборе в увлажненных условиях лесостепи) является плотность не более чем 25-27 тыс. растений на 1 га. Уменьшение этого показателя на 10 тыс. / га способствует повышению массы 1000 семян на 20-30 г.

В районах с недостаточным увлажнением (к примеру, в Турции) кондитерский подсолнечник высевают с плотностью 0,5 x 1,0 м, а это примерно 20 тыс. растений на 1 га. Зато и вырастает он там с массой 1000 шт. семян более 150 г (одновременно увеличивается шелушение — «урожай» шелухи может перевалить за 40%). С меньшей плотностью можно посеять и обычный масляный подсолнечник и получить выход более или менее крупных семян (до 70-80 г) на уровне 60-65%, но вкусовые и технологические качества в этом случае гарантированы.


Борьба с сорняками

Борьба с сорняками в выращивании кондитерского подсолнечника приобретает особое значение, ведь они отбирают у растения азот и воду. Актуальным является и вопрос соблюдения севооборота. Во-первых, подсолнечник не рекомендуется высевать после культур, имеющих повышенную способность к пересушиванию почвы (сахарная свекла, многолетние травы), тем более высевать подсолнечник второй год подряд. Растения многих сортов, а именно кондитерский и лузальный подсолнечник, крепки и высокорослы, имеют индекс листовой поверхности выше оптимального. Итак, недостаток влаги в почве, особенно во время цветения, приводит к ненаполнению семян и высокому выходу мелких фракций. Во-вторых, к сожалению, большинство кондитерских генотипов неустойчивы к новым вирулентным физиологическим заболеваниям.

Нарушение севооборота приводит к быстрому нарастанию в посеве специализированных паразитов, под влиянием которых можно получить щуплое семя, а можно и вовсе остаться без урожая.

Группа спелости гибрида тоже может повлиять на вкус семечек. Если задержались с уборкой урожая, например из-за дождей, то и получили пораженную гнилями горку семян. На качество и цену партии повлияют уже 2% пораженных гнилями семян. Средства борьбы с гнилями включают соблюдение основных элементов технологии выращивания подсолнечника: опять-таки севооборот, уничтожение растительных остатков. Ранний гибрид и удачная архитектоника растения, которая исключает накопление влаги на тыльной стороне корзины во время созревания, также будут способствовать предотвращению поражения серой и белой гнилями. Для предотвращения поражения корзин сухой гнилью и получения заполненных семян целесообразно так запланировать сроки сева, чтобы период цветения не совпал с жаркой сухой погодой — это уже особенности региона выращивания.

Доказано, что определенные погодные условия уменьшают содержание масла в семенах и увеличивают содержание белка. В упрощенном виде, с существенным ростом температуры воздуха на фоне уменьшения количества осадков в течение периода от цветения до физиологической зрелости подсолнечника наблюдается тенденция к уменьшению содержания масла, а также к увеличению содержания белка. Если температура воздуха относительно высокая, а условия увлажнения хорошие — происходит обратный процесс. Это связано с физиологией подсолнечного растения и процессом накопления органических веществ во время созревания семян.

Рынок подсолнечного белка дает хороший шанс фермеру.

Подсчитано, что комплексное использование подсолнечника не только на масло, но и на производство белковых продуктов, повышает коэффициент эффективности использования посевных площадей минимум в 4,5 раза. Совершенствование технологий, создание новых линий переработки, использование современных селекционных достижений являются составными обеспечения населения высококачественным белковым продуктом.

 

xn--e1aelkciia2b7d.xn--p1ai

Отправить ответ

avatar
  Подписаться  
Уведомление о