К основным видам моделирования относятся – Тема 1. Классификация моделей и виды моделирования

Тема 1. Классификация моделей и виды моделирования

Цель и задачи: Введение в понятийные основы моделирования систем, включая основные определения, понятия процессов моделирования и моделей.

Учебные вопросы:

1. Понятие моделирования и модели.

2. Свойства моделей.

3. Назначение моделей (цели и задачи исследования):

4. Виды моделирования.

5. Математическое моделирование.

6. Классификация математических моделей

При проведении экспериментальных и теоретических исследований широко используется моделирование как средство познания материального мира.

Моделирование – процесс замещения объектной сферы некоторой моделью и приведения исследований на модели с целью получения информации об объекте. Т.е. под моделированием понимается процесс построения и использования модели.

Модель (от лат. modulus- мера, образец, норма) – физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно изображать физические свойства и характеристики объекта. Другим словами, объект (материально или мысленно представляемый), который замещает в процессе изучения объект-оригинал, сохраняя его физические свойства и характеристики.

Модель обладает следующими свойствами:

  1. Полнота модели. Чем больше факторов учитывается при построении модели, тем, вероятно более полной она является.

  2. Адекватность модели. Если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемом объекте, то модель адекватна объекту. Адекватность от лат. adaequatus – приравненный. Необходимо учитывать, что адекватность зависит от цели моделирования и принятых критериев.

  3. Простота (или сложность) модели. Если две модели позволяют достичь желаемой цели и при этом позволяют получить результаты с заданной точностью, то предпочтение должно быть отдано более простой.

  4. Потенциальность модели. Потенциально от лат. potentia – мощь, сила. Модель потенциальна (предсказательна), если она позволяет получить новые знания об исследуемом объекте.

Хорошо построенная модель доступнее, информативнее и удобнее для исследователя, чем реальный объект.

Назначение моделей (цели и задачи исследования):

  1. Модель нужна для понимания структуры внутренних связей объекта, основных свойств, законов развития, саморазвития и взаимодействия с окружающей средой.

  2. Модель позволяет определять наилучшие способы управления объектом, системой или процессом при заданных целях и критериях.

  3. Модель необходима для прогнозирования прямых и косвенных последствий реализации заданных способов и форм воздействия на объект.

Различают моделирование материальное и идеальное.

Материальное моделирование – моделирование с использованием материального аналога, воспроизводящего физические, геометрические, динамические и функциональные характеристики объекта.

Основными разновидностями являются:

  1. Натурное (физическое) моделирование – моделирование, при котором реальному объекту ставиться в соответствие его увеличенный (уменьшенный) аналог, допускающий исследование (обычно в лабораторных условиях) с последующим перенесением свойств изучаемых процессов с модели на объект на основе теории подобия.

Примеры: макеты в архитектуре, модели судов, модели самолетов, испытываемые в аэродинамических трубах.

Часто физические (натурные) модели сочетают с компьютерным моделирование, например, при киносъемках.

  1. Аналоговое моделирование – это моделирование, использующее аналогии процессов и явлений, имеющих различную физическую природу, но формально одинаково описываемых (одними и теми же материальными соотношениями, логическими и структурными схемами)

Примеры: Электрические схемы, с помощью которых можно изучать механические колебания, и наоборот. Это обусловлено тем, что механические и электрические колебания с точки зрения математики описываются одинаковыми соотношениями.

Электрическая схема

Механический маятник

L, R, C – индуктивность, сопротивление и емкость;

I(s), V(s) – ток и напряжение в преобразованиях Лапласа

J, B, K – момент инерции, коэффициент трения, коэффициент упругости;

Θ(s), T(s) – угол поворота и приложенный вращающий момент в преобразованиях Лапласа

Модели физического и аналогового типа являются материальным отражением реального объекта, с которым они тесно связаны своими геометрическими и физическими характеристиками.

Фактически процесс исследования этих моделей сводится к проведению ряда натурных экспериментов, в которых вместо реального объекта используется его физическая или аналоговая модель.

Идеальное моделирование – это моделирование, носящее теоретический характер и основанное на аналогии идеальной (не материальной), мысленной.

Идеальное моделирование разделяют на два основных типа: интуитивное и научное.

  1. Интуитивное моделирование – это моделирование, основанное на интуитивном представлении об объекте исследования. Интуитивным следует считать эмпирические (полученные на основе эксперимента или в процессе наблюдения) знания без объяснения причин и механизмов наблюдаемого явления.

  2. Научное моделирование – это моделирование, использующее минимальное число предположений, принятых в качестве гипотез.

Деление моделирования на интуитивное и научное следует признать относительным. Для передачи как научного, так и интуитивного знания используется знаковая форма.

Знаковым моделированием – называется моделирование, использующее в качестве моделей различные знаковые изображения:

— схемы;

— графики;

— язык устного и письменного общения;

— математические символы;

— химические формулы;

— музыкальные ноты и т.д.

Одним из видов знакового моделирования является математическое моделирование.

Математическое моделирование – это научное знаковое моделирование, при котором описание объекта осуществляется на языке математики, а исследование модели проводится с использованием различных математических методов.

Так как в сознании человека вначале формируется идеальная модель, а затем на ее основе строится материальная, то идеальное моделирование можно считать первичным по отношению к материальному. А рассматриваемые виды моделирования можно представить согласно рисунку 1.

Рисунок 1 – Виды моделирования

Рассмотрим классификацию математических моделей.

При проектировании технических объектов используют различные виды математических моделей, в зависимости от уровня иерархии степени декомпозиции системы, стадии и этапа проектирования. На любом уровне иерархии объект представляют в виде совокупности отдельных элементов. В связи с этим различают математические модели элементов и систем . при переходе к более высокому иерархическому уровню системы низшего уровня становятся элементом нового уровня и наоборот. Обычно чем ниже уровень иерархии, тем более детальнее описание физических свойств объекта и следовательно более сложные математические модели.

Различают три иерархических уровня:

1) Верхний (метауровень) соответствует начальным стадиям проектирования. Для построения математической модели метауровня используют методы математической логики, теорию графов, теория автоматического управления.

2) Средний (макроуровень). Объект рассматривают как динамическую систему с сосредоточенными параметрами. Математические модели макроуровня представляют собой системы обыкновенное дифференциальное уравнение (ОДУ).

3) Нижний (микроуровень). Объект представляется как сплошная среда с распределенными параметрами. Для описания процесса функционирования таких объектов используют дифференциальное уравнение в частных производных (ДУЧП). На микроуровне исследуют неделимые по функциональному признаку элементы технической системы, называемыми базовыми элементами (Например, вал, мембрана, стержни и т.д.).

На всех видах иерархических уровнях используют следующие виды математической модели:

  1. Динамические и статические математические модели. Если при моделировании учитываются инерционные свойства объекта и/или изменение во времени параметров объекта или внешней среды, то модель динамическая. Иначе модель – статическая. Статическая модель может быть выражена системой алгебраических уравнений. Динамическая модель может быть выражена системой дифференциальных, интегральных уравнений, передаточными функциями.

  2. Линейная или нелинейная математическая модель. Линейные модели содержат только линейные функции фазовых переменных и их производных. Фазовая переменная (фазовая координата) – величина, характеризующая состояние объекта в процессе его функционирования (скорости и сила. Расхода и давления и т.д.). Нелинейная математическая модель включает нелинейные функции.

  3. Функциональная и структурная математическая модель. Структурные модели отображают только структуру объекта и имеют форму таблиц, матриц и графов. Функциональные модели учитывают и структурные, и функциональные свойства объекта. Имеют форму систем уравнений.

  4. Теоретические и экспериментальные математические модели. Теоретические модели получают по основе описания физических процессов функционирования объекта, а экспериментальные модели – на основе изучения поведения объекта во внешней среде, рассматривая его как «черный ящик». При построении теоретических моделей используют физический подход, который сводиться к непосредственному применению физических законов, и формальный подход, который используют общие математические принципы.

  5. Вероятностные и детерминированные математические модели (стохастические). Вероятностные математические модели учитывают случайный характер воздействия внешней среды, случайный разброс параметров элементов объекта, обусловленный технологическими процессом изготовления. Детерминированные математические модели характеризуются взаимнооднозначным соответствием между внешним воздействием на динамическую систему и ее реакцией на это воздействие.

Существует и иное деление классификация видов моделирования и математических моделей.

Вопросы для самопроверки

  1. Дать краткие определения понятиям модель и моделирование.

  2. Какие свойства имеет модель? Какая по Вашему наиболее важная и почему?

  3. В чем особенность материального моделирования? Какие разновидности вы знаете?

  4. Придумайте собственный пример аналоговых моделей.

  5. На какие типы разделяется идеальное моделирование?

  6. Что может быть использовано в качестве моделей знакового моделирования?

  7. Дайте определение математического моделирования.

  8. Приведите примеры моделей математического моделирования.

Список литературы:

  1. Тарасик В.П. Математическое моделирование технических систем: Учебник для вузов / В.П.Тарасик. – Мн.: ДизайнПРО, 2004.

  2. Самарский А.А. Математическое моделирование: Идеи. Методы. Примеры / А.А. Самарский, А.П. Михайлов. — М.: Физматлит, 2005. — 320с.

  3. Советов Б.Я. Моделирование систем. Учебник для ВУЗов / Б.Я. Советов, С.А. Яковлев. — М.: Высшая школа, 2001 г. – 343с.

  4. Введение в математическое моделирование: Учеб. пособие / под ред. П.В.Трусова. – М.: Логос, 2005. – 440с.

studfiles.net

Модели и моделирование

    1. Понятие модели и моделирования. Классификация видов моделирования и моделей систем

При использовании метода моделирования свойства и поведение объекта изучают путем применения вспомогательной системы – модели, находящейся в определенном объективном соответствии с исследуемым объектом.

Под объектом исследования понимается либо некоторая система, элементы которой в процессе достижения конечной цели реализуют один или несколько процессов, либо некоторый процесс, реализуемый элементами одной или нескольких систем. В связи с этим в дельнейшем тексте термины «модель объекта», «модель системы», «модель процесса» следует воспринимать как эквивалентные.

Представления о тех или иных свойствах объектов, их взаимосвязях формируются исследователем в виде описания этих объектов на обычном языке, в виде рисунков, графиков, формул или реализуются в виде макетов и других устройств. Подобные способы описания обобщаются в едином понятии – модель, а построение и изучение моделей называетсямоделированием.

Заслуживает предпочтения следующее определение: модель – объект любой природы, который создается исследователем с целью получения новых знаний об объекте-оригинале и отражает только существенные (с точки зрения разработчика) свойства оригинала.

Модель считается адекватнойобъекту-оригиналу, если она с достаточной степенью приближения на уровне понимания моделируемого процесса исследователем отражает закономерности процесса функционирования реальной системы во внешней среде.

Модели позволяют вынести упрощенное представление о системе и получить некоторые результаты намного проще, чем при изучении реального объекта. Более того, гипотетически модели объекта могут быть исследованы и изучены перед тем, как объект будет создан.

В практике исследования производственно-экономических объектов модели могут применяться для самых разных целей, что вызывает использование моделей различных классов. Построение одной-единственной математической модели для сложной производственной системы практически не представляется возможным без разработки вспомогательных моделей. Поэтому, как правило, при создании конечной математической модели исследуемого объекта строят частные вспомогательные модели, отражающие ту или иную информацию об объекте, имеющуюся у разработчика на данном этапе построения модели.

В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

Классификационные признаки. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем. Классификация видов моделирования системS приведена на рис.1.1.

В зависимости от характера изучаемых процессов в системе Sвсе виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные.Детерминированное моделированиеотображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий;стохастическое моделированиеотображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т.е. набор однородных реализаций.Статическое моделированиеслужит для описания поведения объекта в какой-либо момент времени, адинамическое моделированиеотражает поведение объекта во времени.Дискретное моделированиеслужит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, адискретно-непрерывное моделированиеиспользуется для тех случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

Рис. 1.1. Классификация видов моделирования систем

При наглядном моделированиина базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основугипотетического моделированияисследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

Аналоговое моделированиеосновывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализоватьзнаковое моделированиеи с помощью знаков отображать набор понятий – составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделированиялежит некоторый тезаурус. Последний образует из наборов входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус – словарь, который очищен от неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков и символов.

Математическое моделирование. Для исследования характеристик процесса функционирования любой системыSматематическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

Для аналитическогомоделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродифференциальных, конечно-разностных и т.п.) или логических условий.Аналитическая модельможет быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S. Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

При имитационном моделированииреализующий модель алгоритм воспроизводит процесс функционирования системыSво времени, причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системыS.

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапах ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S,Являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.е. появился метод статистического моделирования. Таким образом,методом статистического моделированиябудем в дальнейшем называть метод машинной реализации имитационной модели, аметодом статистических испытаний (Монте-Карло)– численный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алгоритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска варианта системы. Бале в методологии машинного моделирования будем различать два основных раздела: статику и динамику, – основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

Комбинированное (аналитико-имитационное) моделированиепри анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

Другие виды моделирования. Приреальном моделированиииспользуется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.п.). Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т.е. предприятием, что в большинстве случаев невозможно.

К основным разновидностям реального моделирования относятся:

  • Натурное моделирование, под которым понимают проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удается выявить закономерности протекания реального процесса. Необходимо отметить, что такие разновидности натурного эксперимента, как производственный эксперимент и комплексные испытания, обладают высокой степенью достоверности.

  • Физическое моделированиеотличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием.

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой модельюпонимается модель, которая описывается уравнениями, связывающими непрерывные величины. Подцифровойпонимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Поданалого-цифровойпонимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование, в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

Целевое назначение модели.По целевому назначению модели подразделяются на модели структуры, функционирования и стоимостные (модели расхода ресурсов).

Модели структурыотображают связи между компонентами объекта и внешней средой и подразделяются на:

  • каноническую модель, характеризующую взаимодействие объекта с окружением через входы и выходы;

  • модель внутренней структуры, характеризующую состав компонентов объекта и связи между ними;

  • модель иерархической структуры (дерево системы), в которой объект (целое) расчленяется на элементы более низкого уровня, действия которых подчинены интересам целого.

Модель структуры обычно представляется в виде блок-схемы, реже графов и матриц связей.

Модели функционированиявключают широкий спектр символических моделей, например:

модель жизненного цикла системы,описывающая процессы существования системы от зарождения замысла ее создания до прекращения функционирования;

модели операций, выполняемых объектом и представляющих описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных функций объекта. Так, в состав моделей операций могут входить модели надежности, характеризующие выход элементов системы из строя под влиянием эксплуатационных факторов, и модели живучести факторов, характеризующие выход элементов системы из строя под влиянием целенаправленного воздействия внешней среды;

информационные модели, отображающие во взаимосвязи источники и потребители информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

процедурные модели,описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных операций, например обработки материалов, деятельности персонала, использования информации, в том числе и реализации процедур принятия управленческих решений;

временные модели,описывающие процедуру функционирования объекта во времени и распределение ресурса «время» по отдельным компонентам объекта.

Стоимостные модели,как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны, «питаются» от них информацией и совместно с ними позволяют проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.

При анализе и оптимизации производственно-экономических объектов проводится объединение построенных математических функциональных моделей с математическими стоимостными моделями в единую экономико-математическую модель.

Насколько можно судить по литературным источникам общепринятой классификации моделей экономических систем пока не существует. Однако представляется достаточно полезной классификация математических моделей экономических систем, приведенная в книге Т. Нейлора «Машинные имитационные эксперименты с моделями экономических систем» (1971 г.) (рис. 1.2).

Рис.1.2. Классификация экономических моделей

Экономико-математической моделью (ЭММ)называется выражение, состоящее из совокупности связанных между собой математическими зависимостями (формулами, уравнениями, неравенствами, логическими условиями величин – факторов, все или часть которых имеют экономический смысл. По своей роли в ЭММ эти факторы целесообразно подразделить на параметры и характеристики (рис. 1.3).

Рис. 1.3. Классификация факторов по их роли в ЭВМ

При этом параметрамиобъекта называются факторы, характеризующие свойства объекта или составляющих его элементов. В процессе исследования объекта ряд параметров может изменяться, поэтому они называютсяпеременными,которые в свою очередь подразделяются на переменные состояния и переменные управления. Как правило, переменные состояния объекта являются функцией переменных управления и воздействий внешней среды.Характеристиками(выходными характеристиками) называются интересующие исследователя непосредст-венные конечные результаты функционирования объекта (естественно, что выходные характеристики являются переменными состояния). Соответственно характеристики внешней среды описывают свойства внешней среды, которые сказываются на процессе и результате функционирования объекта. Значения ряда факторов, определяющие начальное состояние объекта или внешней среды, называютсяначальными условиями.

При рассмотрении ЭММ оперируют следующими понятиями: критерий оптимальности, целевая функция, система ограничений, уравнения связи, решение модели.

Критерием оптимальностиназывается некоторый показатель, имеющий экономическое содержание, служащий формализацией конкретной цели управления и выражаемый при помощи целевой функции через факторы модели. Критерий оптимальности определяет смысловое содержание целевой функции. В ряде случаев в качестве критерия оптимальности может выступать одна из выходных характеристик объекта.

Целевая функцияматематически связывает между собой факторы модели, ее значение определяется значениями этих величин. Содержательный смысл целевой функции придает только критерий оптимальности.

Не следует смешивать критерий оптимальности и целевую функцию. Так, например, критерий прибыли и стоимости произведенной продукции могут описываться одной и той же целевой функцией:

, (1.1)

где – номенклатура производимой продукции;– объем выпускаi-ой номенклатуры;– прибыль от выпуска единицыi-ой номенклатуры или стоимость единицыi-ой номенклатуры в зависимости от смысла критерия оптимальности.

Критерий прибыли может рассчитываться и по нелинейной целевой функции:

, (1.2)

Если прибыль от выпуска единицы i-ой номенклатуры является функцией от объема выпуска.

При наличии нескольких критериев оптимальности каждый из них будет формализован своей частной целевой функцией , где– число критериев оптимальности. Для однозначного выбора оптимального решения исследователь может сформулировать новую целевую функцию

. (1.3)

Однако целевая функция может уже не нести экономического смысла, в этом случае критерий оптимальности для нее отсутствует.

Система ограниченийопределяет пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внешние и внутренние свойства объекта. Ограничения определяют область протекания процесса, пределы изменения параметров и характеристик объекта.

Уравнения связиявляются математической формализацией системы ограничений. Между понятиями «система ограничений» и «Уравнения связи» существует точно такая же аналогия, как между понятиями «критерий оптимальности» и «целевая функция»: различные по смыслу ограничения могут описываться одинаковыми уравнениями связи, а одно и то же ограничение в разных моделях записываться различными уравнениями связи.

Таким образом, именно критерий оптимальности и система ограничений в первую очередь определяют концепцию построения будущей математической модели, т.е. концептуальную модель, а их формализация, т.е. целевая функция и уравнения связи, представляют собой математическую модель.

Решениемматематической модели называется такой набор (совокупность) значений переменных, который удовлетворяет ее уравнениям связи. Решения, имеющие экономический смысл, называют структурно допустимыми. Модели, имеющие много решений, называются вариантными в отличие от безвариантных, имеющих одно решение. Среди структурно допустимых решений вариантной модели, как правило, находится одно решение, при котором целевая функция в зависимости от смысла модели имеет наибольшее или наименьшее значение. Такое решение, как и соответствующее значение целевой функции, называетсяоптимальным(в частности, наименьшим или наибольшим).

Использование ЭММ, особенно оптимальных, предполагает не только построение модели, соответствующей поставленной задаче, но и ее решение при помощи подходящего метода. В связи с этим иногда под моделированием (в узком смысле) понимается этап нахождения решения модели, т.е. вычисления значений исследуемых характеристик и определение оптимальности различных вариантов изучаемого объекта с целью выбора наилучшего варианта его построения и функционирования. Данный этап представляет собой реализацию и исследование ЭММ на определенном наборе вычислительных средств. Выбор метода решения оптимизационных ЭММ зависит от математической формы, связывающей факторы модели, наличия тех или иных признаков (учет динамики, учет стохастичности и т.д.). С точки зрения корректного выбора метода решения модели наиболее существенными признаками являются характер цели исследования, формализованность связей между параметрами и характеристиками, учет вероятностной природы объекта, а также фактора времени.

По характеру цели исследования ЭММ делятся на оптимизационные(нормативные) иописательные(дескриптивные или ЭММ прямого счета).

Характерной чертой оптимизационных моделей является наличие одной или нескольких целевых функций. При этом в первом случае оптимизационные ЭММ называются монокритериальными, а во втором –многокритериальными. В общем виде монокритериальная ЭММ может быть представлена следующей системой отношений:

; (1.4)

, (1.5)

где Е– критерий оптимальности объекта;– управляемые переменные,;– неуправляемые факторы модели;;– уравнения связи, представляющие собой формализацию системы ограничений,;– целевая функция – формализованное выражение критерия оптимальности.

Выражение означает, что в ограничениях может стоять любое из приведенных в фигурных скобках логических условий.

Решение модели, заданной соотношениями (1.4) и (1.5), заключается в нахождении совокупности значений переменных

,

Обращающий в max(илиmin) целевую функциюЕпри заданных уравнениях связи.

Специфика конкретных задач управления производством определила разнообразие типов оптимизационных ЭММ. Это вызвало для ряда наиболее часто повторяющихся типов ситуаций разработку «стандартных» экономико-математических методов их описания, например, распределительные задачи различных классов, задачи управления запасами, ремонта и замены оборудования, проектирования сетей и выбора маршрутов и т.д.

Существенным признаком описательных моделей является отсутствие в них критерия оптимальности. Решение, даваемое ЭММ прямого счета, обеспечивает либо вычисление набора выходных характеристик объекта для одного или нескольких вариантов начальных условий и входных характеристик объекта, либо нахождение какой-либо совокупности значений в структурно допустимой области решений. Примеры типовых задач управления машиностроительным производством, решаемых с помощью описательных моделей, приведены в табл. 1.1.

Таблица 1.1. Примеры описательных моделей

Тип задачи

Вид модели

Математический метод решения

Задачи планирования без оптимизации (расчет объемов производства по видам продукции, увязка планов производства с ресурсами и т.п.)

Балансовые модели

Аппарат линейной алгебры, матричное исчисление

Задачи сетевого планирования и управление (СПУ) без оптимизации

Расчет по формулам модели СПУ

Аппарат теории графов

Задача учета и статистики (оперативный учет, получение различных форм отчетности и т.п.)

Расчет по формулам

Задачи контроля и анализа (анализ влияния и факторов, выявление тенденций, отслеживание отклонений и установление их причин)

Статистические модели обработки реализаций случайных величин

Факторный анализ, дисперсионный анализ, регрессионный анализ

Задача создания нормативной базы

Статистические модели обработки реализаций случайных величин

Расчет параметров функционирования сложных систем с неформализованными связями.

Расчет по формулам имитационных моделей

Задачи прогнозирования

Модели регрессионного анализа, оценка параметров и проверка статистических гипотез

Факторный анализ, дисперсионный анализ, регрессионный анализ, аппарат математической статистики

Тип задачи

Вид модели

Математический метод решения

Прочие задачи, связанные с рутинными процессами переработки информации, т.е. с расчетами по заданным формулам (расчеты подетальных спецификаций, потребности в оборудовании и производственных площадях и другие расчеты технической подготовки производства)

В зависимости от степени формализованности связей f иgiмежду факторами моделей в выражениях (1.4) и (1.5) различаютаналитическиеиалгоритмическиемодели.

Аналитическойформой записи называется запись математической модели в виде алгебраических уравнений или неравенств, не имеющих разветвлений вычислительного процесса при определении значений любых переменных состояния модели, целевой функции и уравнений связи. Если в математических моделях единственная целевая функцияf и ограниченияgj заданы аналитически, то подобные модели относятся к классу моделей математического программирования. Характер функциональных зависимостей, выраженных в функцияхf иgj , может быть линейным и нелинейным. Соответственно этому ЭММ делятся налинейныеинелинейные, а среди последних в специальные классы выделяютсядробнолинейные,кусочно-линейные,квадратичныеивыпуклыемодели.

Если мы имеем дело со сложной системой, то зачастую гораздо легче построить ее модель в виде алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логических условий – разветвлений хода течения процесса. Математическое описание для элементов может быть очень простым, однако взаимодействие большого количества простых по математическому описанию элементов и делает эту систему сложной. Алгоритмически же можно описывать даже такие объекты, которые в силу их сложности или громоздкости в принципе не допускают аналитического описания. В связи с этим к алгоритмическиммоделям относятся такие, в которых критерии и (или) ограничения описываются математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. К алгоритмическим моделям относятся и так называемые имитационные модели – моделирующие алгоритмы, имитирующие поведение элементов изучаемого объекта и взаимодействие между ними в процессе функционирования.

В зависимости от того, содержит ли ЭММ случайные факторы, она может быть отнесена к классу стохастическихилидетерминированных.

В детерминированныхмоделях ни целевая функцияf , ни уравнения связиgj не содержат случайных факторов. Следовательно, для данного множества входных значений модели на выходе может быть получен только один-единственный результат. ДлястохастическихЭММ характерно наличие среди факторовмодели, описываемой соотношениями (1.4) и (1.5), таких, которые имеют вероятностную природу и характеризуются какими-либо законами распределения, причем среди функцийf иgj могут быть и случайные функции. Значения выходных характеристик в таких моделях могут быть предсказаны только в вероятностном смысле. Реализация стохастических ЭММ в большинстве случаев осуществляется на ЭВМ методами имитационного статистического моделирования.

Следующим признаком, по которому можно различать ЭММ, является связь с фактором времени. Модели, в которых входные факторы, а следовательно, и результаты моделирования явно зависят от времени, называются динамическими, а модели, в которых зависимость от времениtлибо отсутствует совсем, либо проявляется слабо или неявно, называютстатическими. Интересны в этом отношении имитационные модели: по механизму функционирования они являются динамическими (в модели идет имитация работы объекта в течении некоторого периода времени), а по результатам моделирования – статическими (например, ищется средняя производительность объекта за моделируемый период времени).

Статические модели представляют собой известную степень приближения к реальным объектам и системам, функционирующим во времени. Во многих случаях степень такого приближения, проявляющаяся в допущениях о неизменности или различного рода усреднениях факторов во времени (косвенно или приблизительно учитывающих фактор времени в определенных границах его изменения), является достаточной для практического применения статических моделей.

studfiles.net

1.3. Классификация видов моделирования систем

В основе классификации видов моделирования систем лежат различные признаки, такие как

  • степень полноты модели;

  • характер изучаемых процессов в системе;

  • форма представления системы.

Классификация видов моделирования систем приведена на рис. 1.4 [8].

Основой моделирования является теория подобия, из которой следует, что абсолютное подобие может иметь место лишь при замене одного объекта другим, точно таким же. При моделировании абсолютное подобие не имеет места, и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования системы. Поэтому в качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные.

Рис. 1.4. Классификация видов моделирования систем

В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. При приближенном моделировании лежит приближённое подобие, при котором некоторые стороны функционирования реальной системы не учитываются совсем.

B зависимости от характера изучаемых процессов в системе все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные.

Детерминированное моделирование отображает детерминированные процессы, т.e. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события.

Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, a динамическое моделирование отражает поведение объекта во времени.

Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, a дискретно-непрерывное моделирование используется для случаев, когда хотят выделять наличие как дискретных, так и непрерывных процессов.

B зависимости от формы представления объекта (системы) можно выделить мысленное и реальное моделирование.

Мысленное моделирование – это моделирование объектов без их практической реализации. Реальное моделирование заключается в проведении исследования на реальном объекте целиком или его части.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически не реализуемы в заданном интервале времени, либо существуют вне условий для их физического создания. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

Наглядное моделирование основывается на базе представлений человека о реальных объектах и подразделяется на гипотетическое, аналоговое и макетирование.

B основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний об объекте. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

Аналоговое моделирование основывается на применении аналогий различных уровней.

Макетирование основывается на создании мысленных макетов и используется в тех случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов. Символическое моделирование подразделяется на языковое и знаковое.

Языковое моделирование основывается на фиксированном наборе понятий. В основе языкового моделирования лежит тезаурус – словарь, который очищен от неоднозначности, т.е. в нём каждому слову может соответствовать лишь единственное понятие.

При знаковом моделировании введены условные обозначения отдельных понятий, т.е. знаки, а также определённые операции между этими знаками. С помощью знаков можно составлять отдельные цепочки из слов и предложений, а использование операций позволяет получать описание реальных объектов.

Для исследования характеристик процесса функционирования любой системы математическими методами должна быть проведена формализация этого процесса, т.е. построена математическая модель.

Важное место занимает математическое моделирование, представляющее собой процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получить характеристики рассматриваемого реального объекта. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения. Математическое моделирование включает в себя аналитическое, имитационное и комбинированное.

Аналитическое моделирование основывается на косвенном описании реального объекта с помощью набора математических выражений, которые образуют аналитическую модель. Компьютер при аналитическом моделировании используется в качестве вычислителя.

Для аналитического моделирования характерно то, что процессы функционирования исследуемой системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами:

  • аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;

  • численным, когда, не умея решать уравнения в общем виде, стремятся получить численные результаты при конкретных начальных данных;

  • качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, устойчивость).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы. Однако такие зависимости удаётся получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности.

Имитационное моделирование основано на прямом описании моделируемого объекта, используя структурное подобие объекта и модели, т.е. каждому существенному, с точки зрения решаемой задачи, элементу объекта ставится в соответствие элемент модели.

При имитационном моделировании в качестве имитационной модели выступает алгоритм, воспроизводящий процесс функционирования исследуемой системы, при этом имитируются элементарные явления составляющего процесса, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определённые моменты времени, дающие возможность оценить характеристики системы. Компьютер при имитационном моделировании служит имитатором исследуемой системы

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Метод имитационного моделирования позволяет решать задачи анализа больших систем, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему с заданными характеристиками при определённых ограничениях, которая является оптимальной по выбранным критериям оценки эффективности.

Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится декомпозиция процесса функционирования объекта на составляющие подпроцессы, и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

При реальном моделировании используется возможность исследования различных характеристик либо на реальным объекте целиком, либо на его части. Отличие эксперимента от реального протекания процесса заключается в том, что в нём могут появиться отдельные критические ситуации. В ходе эксперимента вводятся новые факторы и возмущающие воздействия в процессе функционирования объекта.

Реальное моделирование подразделяется на натурное и физическое.

Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удаётся выявить закономерности протекания реального процесса. Разновидности натурного моделирования, как комплексные испытания, производственный эксперимент и натурный эксперимент, обладают высокой степенью достоверности.

Физическое моделирование отличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и нереальном (псевдореальном) масштабах времени, а также может рассматриваться без учёта времени.

Реальное моделирование является наиболее адекватным, но при этом его возможности с учётом особенностей реальных объектов ограничены.

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины. Под цифровой понимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Под аналого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особый вид моделирования – кибернетическое моделирование, в котором отсутствует непосредственное подобие между реальным объектом и моделью. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как “чёрный ящик”, имеющий ряд входов и выходов, и моделируются некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отношение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта.

Высшее назначение математики —

Находить порядок в хаосе,

Который нас окружает “.

studfiles.net

Понятие модели. Виды моделирования

Основным методом научных исследований является эксперимент с изучаемым объектом, явлением или процессом. Под экспериментом понимают научную постановку опытов и наблюдение за поведением исследуемого явления в строго учитываемых условиях. Зачастую он может быть трудновыполним, экономически не выгоден или просто невозможен, например, ввиду отсутствия исследуемого объекта. В этом случае применяют особую форму эксперимента, называемую моделированием. По своему содержанию моделирование направлено на выявление свойств изучаемого объекта, построение его модели и прогнозирование поведения исследуемого объекта. В ряде наиболее важных случаев к целям моделирования относятся:

обоснование достоверности математического описания объекта;

получение функциональных зависимостей между переменными модели;

сравнение стратегий поведения сторон в конфликтных ситуациях;

идентификация исследуемого объекта;

оптимизация модели и выбор целевой функции;

применение модели для обучения и тренировок.

Сущность моделирования заключается в следующем.

Построение модели начинается с изучения объекта и выдвижения гипотезы о характере свойств его на основе ограниченных сведений, некоторых догадках и предположениях. Для этого анализируются объекты-аналоги, из них выбирается прототип, наиболее близкий аналог объекта, исследование свойств которого доступно исследователю. В результате анализа прототипа создается некоторая логическая схема, позволяющая провести эксперимент и уточнить свойства объекта. Такую логическую схему называют моделью объекта. При сходстве математического описания модели и объекта, т.е. при условии их подобия, результаты исследования свойств модели можно пересчитать (перенести) на объект. Модель считается адекватной объекту, если результаты моделирования подтверждаются.

Моделированием называют способ, прием познания, позволяющий с помощью одной системы, чаще всего, искусственной воспроизвести в необходимом объеме и с требуемой точностью исследуемые стороны, свойства другой более сложной системы, являющейся объектом исследования.

Модель-это физическая или абстрактная система, воспроизводящая объект исследования и удобная для проведения экспериментов.

Удобство проведения исследований может определяться различными факторами: легкостью и доступностью получения информации, сокращением сроков и уменьшением материальных затрат на исследование и др.

Рассмотрим краткую классификацию видов моделирования систем (рис. 1.1).

 

Рисунок 1.1 Классификация видов моделирования систем

 

Различают моделирование физическое и математическое.

Физическое моделирование предполагает, что в качестве модели используется либо сама исследуемая система (например, в случае производственного эксперимента), либо другая система с той же или подобной физической природой. Обычно изготавливается макетный или опытный образец объекта, проводятся испытания, в процессе которых определяются его выходные параметры и характеристики, оцениваются надежность функционирования и степень выполнения технических требований, предъявленных к объекту. Если вариант технической разработки оказался неудачным, все повторяется сначала, то есть осуществляется повторное проектирование, изготовление опытного образца, испытания и т.д. Примером такого физического моделирования является продувка моделей самолетов в аэродинамических трубах. Понятно, что физическое моделирование сопряжено с большими временными и материальными затратами.

Под математическим моделированием понимается процесс установления соответствия данной реальной системы некоторой математической модели и исследование этой модели, позволяющее получить характеристики реальной системы.

Математическое моделирование может быть как аналитическим, так и компьютерным.

Для аналитического моделирования характерно то, что процесс функционирования элементов системы записывается в виде некоторых математических соотношений (алгебраических, интегральных, разностных и т.д.) или логических условий. Аналитическая модель может исследоваться:

аналитически, когда стремятся получить явные зависимости для искомых характеристик системы;

численно, когда, не умея решать уравнения, стремятся получить численные результаты, при конкретных исходных и начальных условиях;

качественно, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

Математическая модель приближенно описывает реальный процесс, явление или объект с помощью математических соотношений. Математические модели могут представлять собой системы дифференциальных уравнений (обыкновенных или в частных производных), системы алгебраических уравнений, разностные уравнения, линейные, нелинейные уравнения и т.д.

Компьютерное моделирование можно разделить на три вида: численное, имитационное, статистическое.

Для компьютерного моделирования характерно, что математическая модель системы представлена в виде программы на ЭВМ или компьютерной модели, позволяющей проводить с ней вычислительные эксперименты. При численном моделировании для построения компьютерной модели используются методы вычислительной математики, а вычислительный эксперимент заключается в численном решении некоторых математических уравнений при заданных значениях параметров и начальных условиях. Имитационное моделирование – это вид компьютерного моделирования, для которого характерно воспроизведение на ЭВМ (имитация) процесса функционирования исследуемой системы. При этом имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры, последовательности протекания во времени, что позволяет получить информацию о состоянии системы в заданные моменты времени. Статистическое моделирование – это вид компьютерного моделирования, позволяющий получить статистические данные о процессах в моделируемой системе.

 


Похожие статьи:

poznayka.org

Классификация видов моделирования систем.

В зависимости от критерия лежащего в основе классификации различают следующие виды классификаций видлв моделирования систем.

Классификация по степени полноты модели.

В основе моделирования лежит теория подобия, которая утверждает, что полное подобие возможно лишь при замене одного объекта другим, точно таким же и в зависимости от степени подобия все модели разделяют на полные, неполные, приближенные.

При приближённом моделировании некоторые стороны функционирования объекта не моделируются совсем.

Классификация по характеру случайных процессов.

Детерминированное моделирование отражает детерминированные процессы, т.е. процессы в которых предполагается отсутствие всяких случайных воздействий.

Стохастическое моделирование отображает вероятностные процессы и события.

Статическое моделирование используется для описания поведения объекта в конкретный момент времени.

Динамическое моделирование отображает поведение объекта во времени.

Дискретное моделирование описывает дискретные процессы.

Непрерывное моделирование описывает непрерывные процессы.

Дискретное моделирование используется для описания систем, в которых хотят выделить как дискретные, так и непрерывные процессы.

Классификация по форме представления объекта.

В зависимости от формы представления объекта можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которое практически не реализуемы в заданном интервале времени, либо существуют вне условий возможных для их физического создания. При наглядном моделировании на базе знаний человека создаются наглядные модели, отображающие явления и процессы, протекающие в исследуемом объекте.

В основу гипотетического моделирования закладывается некоторая гипотеза исследователей, базирующаяся на причинно-следственных связях между входом и выходом объекта.

При аналоговом моделировании используются аналогии различных уровней. В основе построения мысленных макетов также лежат аналогии, однако базирующиеся на причинно-следственных связях между процессами и явлениями в объекте.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов. При символическом моделировании выделяют знаковое и языковое моделирование. Если ввести условное обозначение отдельных понятий, т.е. знаки и определить операции между ними, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий, т.е. составить отдельные цепочки из слов и предложений. Использование операции дополнения, объединения и отрицания из теории множеств можно дать логическое описание объекта.

В основе языкового моделирования лежит некоторый тезаурус, состоящий из набора понятий, причем этот набор должен быть строго фиксирован.

Тезаурус – словарь, лишенный многозначности, т.е. каждому слову соответствует одно понятие.

Математическое моделирование – это процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью и исследование свойств реального объекта.

Вид математической модели зависит как от свойств реального объекта, так и от задач моделирования, а также требуемой точности и достоверности результата.

Математическое моделирование можно разделить на аналитическое, имитационное и комбинированное.

Для аналитического моделирования характерно то, что процессы, происходящие в реальном объекте записывается в виде некоторых функциональных соотношений или логических соотношений. Аналитическая модель может быть исследована следующими методами: аналитическими, когда стремятся получить решение в явном виде функциональных зависимостей; численными методами, когда не умея решать в явном виде получают числовое значение для конкретных условий; качественными методами, когда не имея решения в явном виде можно оценить некоторые его свойства.

Наиболее полное исследование функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, а также параметрами и переменными системы. Однако такие зависимости возможно получить лишь для простых систем. При исследовании сложных систем аналитическими методами приходится вводить ряд упрощений. Такое исследование на упрощённой модели позволяет получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет, по сравнению с аналитическими методами, решать более широкий класс задач, но при этом полученное решение носит частный характер. В некоторые случаях исследователя могут удовлетворить выводы, полученные при использовании качественного метода.

При имитационном моделировании алгоритм, реализующий модель воспроизводит функционирование системы во времени, причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет получить сведения о составляющих процесса в любой момент времени. Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность исследования более сложных задач. Они позволяют учитывать наличие дискретных и нелинейных элементов, многочисленные случайные воздействия на систему.

Комбинированное моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного видов моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие. И для тех из них, где возможно, используется аналитические модели, а для остальных процессов строятся имитационные модели.

При реальном моделировании используется возможность исследования характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальном режиме, так и при организации специальных режимов работы для оценки исследователем интересующих сторон функционирования объекта. Реальное моделирование является наиболее адекватным, но использование его ограничено. Реальное моделирование делят на натурное и физическое моделирование. В натурном моделировании назначают проведение исследований на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объектов в связи с поставленной целью удается выявить закономерности протекания процесса. Такие виды натурного моделирования как комплексное испытание и производственный эксперимент обладают высокой степенью достоверности. Один из видов натурного моделирования – научный эксперимент – характеризуется широкой степенью использования вспомогательного оборудования и возможностью вмешательства человека в процесс эксперимента. Отличие эксперимента от реального протекания процесса заключается в том, что в нём могут появляться различные критические точки и определяться границы устойчивости эксперимента. В ходе эксперимента вводятся новые факторы и возмущающие воздействия в процесс функционирования объекта. Одна из разновидностей эксперимента – комплексные испытания. В этом случае в результате повторения испытаний объекта выделяются общие закономерности в объекте. В этом случае моделирование осуществляется путем обобщения сведений, проходящих в группе явлений. Наряду со специальными организованными экспериментами возможна реализация моделирования путем обобщения опыта, накопленного в ходе производственного процесса. В этом случае говорят о производственном эксперименте. В нем на базе теории подобия обрабатывается статистический материал по производственному процессу и получают его обобщенные характеристики.

Физическое моделирование отличается от натурного тем, что исследования проводятся на установках, которые сохраняют природу явлений и обладают физическим подобием. При физическом моделировании задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта либо его модели при заданных или создаваемых искусственно возмущениях внешней среды. Физическое моделирование может протекать в реальном или нереальном масштабе времени, а также может рассматриваться без учета времени.

Чаще всего на практике используется физическое, аналоговое или математическое моделирование.

Физическое моделирование.

Достоинства: непосредственное наблюдение протекающих процессов; достаточная достоверность результатов.

Недостаток: высокая стоимость моделирования.

Аналоговое моделирование.

Достоинства: возможность изучения процессов модели по аналогии с процессами иной физической природы.

Недостаток: зависимость точности результата от подбора элементов.

Математическое моделирование.

Достоинства: возможность не учитывать физическую природу объекта, простота и быстрота анализа модели, выделение наиболее существенных свойств объекта, возможность исследования работы объекта в различных режимах.

Недостаток: невозможность визуального наблюдения процессов в объекте.

studfiles.net

1.2. Моделирование и его виды

Моделирование – это процесс построения, реализации и исследования модели.

Классифицировать модели можно по разным критериям.

Существует несколько приемов моделирования, которые можно условно разделить на две большие группы: материальное и идеальное моделирование (рис. 1.1).

Рис. 1.1. Виды моделирования

К материальным относятся такие способы моделирования, при которых исследование ведется по модели, воспроизводящей основные геометрические, физические, динамические и функциональные характеристики изучаемого объекта. Из разновидностей материального моделирования выделим физическое и аналоговое моделирование.

Физическим принято называть моделирование, при котором реальному объекту противопоставляется его уменьшенная (реже увеличенная) копия, допускающая лабораторное исследование и позволяющая переносить установленные свойства на реальный объект с помощью теории подобия. Типичный пример физического моделирования – исследование уменьшенной копии летательного аппарата в аэродинамической трубе, в архитектуре – макеты зданий и т. п.

Аналоговое моделирование основано на аналогии процессов и явлений, имеющих различную физическую природу, но описываемую формально (одними и теми же математическими уравнениями, логическими схемами и т.п.). Типичный пример – изучение механических колебаний с помощью электрической схемы. Другой пример – макет системы кровообращения, на котором стрелочками изображены направления движения крови.

От предметного или материального моделирования принципиально отличается идеальное моделирование, которое основано не на материальной аналогии объекта и модели, а на аналогии идеальной, мыслимой. Идеальное моделирование носит теоретический характер.

Знаковым называется моделирование, использующее в качестве моделей знаковые преобразования какого-либо вида: схемы, графики, чертежи, формулы, наборы символов.

Важнейшим видом знакового моделирования является математическое моделирование, при котором исследование объекта осуществляется посредством модели, сформулированной на языке математики. Классическим примером математического моделирования является описание и исследование законов механики Ньютона средствами математики.

Для построения моделей используют два принципа: дедуктивный (от общего к частному) и индуктивный (от частного к общему). При первом подходе рассматривается частный случай общеизвестной фундаментальной модели, которая приспосабливается к условиям моделируемого объекта с учетом конкретных обстоятельств. Второй способ предполагает выдвижение гипотез, декомпозицию сложного объекта, анализ, а затем синтез. Здесь широко используется подобие, поиск аналогий, умозаключение с целью формирования каких-либо закономерностей в виде предположений о поведении системы.

1.3. Понятие, структура и классификация экономико-математических моделей

Наиболее простым для понимания является следующее определение:

Экономико-математическая модель – это математическое описание экономического объекта, процесса либо явления с целью его исследования, управления или прогнозирования.

Рассмотрим вопрос структуры, т.е. с чего должна состоять любая экономико-математическая модель.

Экономическую систему любого уровня сложности (предприятие, производственный комплекс, отрасль, национальная экономика) схематически можно представить как систему, на вход которой поступают ресурсы, а на выходе получается готовая продукция (услуги). Главное назначение каждой экономической системы – как можно полнее удовлетворить безграничные человеческие потребности в товарах и услугах. При этом продукции необходимой населению нужно произвести как можно больше, а ресурсов (количество которых всегда ограничено) потратить как можно меньше. Представим произвольную экономическую систему в таком упрощенном виде ( рис. 1.2).

Рис. 1.2. Схема экономической системы

Количественными характеристиками экономической системы являются параметры сk (k = 1, 2, …, l). Состав и характеристики этих параметров определяются конкретной экономической системой. Следует отметить, что возможны случаи, когда часть параметров являются постоянными величинами, а часть – переменными. В свою очередь, переменные величины делятся на зависимые (y) и независимые (x), управляемые и неуправляемые, дискретные и непрерывные, детерминированные и случайные и т.д.

Система параметров – это первая составляющая часть экономико-математических моделей.

Вторая важная составляющая часть– это целевая функция или математически описана цель функционирования данной экономической системы (как правило, обозначается через F). Значение функции F должно полностью определятся значениями переменных и параметров системы:

F = f (x1, x2, …, xn; y1, y2, …, ym; c1, c2, …, cl) (1.1)

Возможности выбора xj всегда ограничены внешними по системе условиями и параметрами производственно-экономической системы. Эти ограничения можно описать системой математических равенств и неравенств вида:

(1.2)

Здесь набор символов {,=, } означает, что для разных значений текущего индекса і может использоваться любой из этих символов.

Систему (1.2) принято называть системой ограничений, или системой условий. Она описывает внутренние технологические и экономические процессы функционирования и развития производственно-экономической системы, а также процессы внешней среды, которые влияют на результат деятельности системы.

Таким образом, в общем случае экономико-математическая модель состоит из:

1) Системы параметров;

2) Целевой функции;

3) Системы ограничений.

Классифицировать экономико-математические модели можно за следующими признаками:

— Назначением;

— Характером решаемых проблем;

— Степенью вероятности;

— Способом учета времени;

— Формой математических зависимостей между переменными и другими признаками.

За назначением экономико-математические модели целесообразно разбить на имитационные, балансовые, эконометрические, имитационные, сетевые, оптимизационные.

По характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие – как функции от этих величин. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. которые, как правило, не поддаются количественному измерению.

За степенью вероятности модели делят на два типы: вероятностные (стохастические), в которых некоторые параметры или переменные носят случайный характер, и детерминированные, в которых игнорируется случайный характер изменения переменных.

За способом учета времени экономико-математические модели, как правило, делят на статические (не изменяются со временем) и динамические (учитывают изменение параметров модели во времени).

За формой математических зависимостей выделают модели линейные (все переменные имеют зависимость первой степени) и нелинейные (модели, в которых либо целевая функция, либо какое-нибудь из ограничений (либо все ограничения) нелинейные, т.е. имеют зависимость не у первой степени).

Построение и расчет линейных моделей являются наиболее развитым разделом математического моделирования, поэтому часто к ним стараются свести и другие задачи либо на этапе постановки, либо в процессе решения.

Надо, однако, учитывать, что многие экономические процессы в действительности носят нелинейный и стохастический характер и их аппроксимация (замена) линейными зависимостями (линеаризация), упрощая расчеты, существенно огрубляет и искажает их. Поэтому линейные модели страдают известной ограниченностью в том, что касается отображения с их помощью реальных экономических процессов. Но во многих случаях созданный на этой основе математический аппарат в сочетании с компьютерной техникой, производящей сложные и трудоемкие расчеты, позволяет с успехом использовать такие модели в хозяйственной практике и в экономической науке.

studfiles.net

5.2 Основные понятия моделирования

Моделированиемназывается замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели. Моделирование применяется обычно в тех случаях, когда исследование непосредственно на натурном объекте затруднительно либо опасно.

Модель (в переводе с французского – образец) – это упрощенная форма представления реальных процессов и взаимосвязей в системе, позволяющая изучить, оценить и прогнозировать влияние составляющих элементов (либо отдельных факторов) на поведение системы в целом. В научном исследовании под моделью понимают искусственно созданную систему, которая в определенном отношении схожа с исследуемым объектом, так как воспроизводит его характерные черты и явления, происходящие в натурных условиях.

Все многообразие моделей можно разделить на 2 класса: вещественные (физические или для объектов техники механические) и воображаемые (математические).

Физической модельюможет считаться установка, в которой осуществлено полное или неполное моделирование и соответственно физическое подобие, благодаря чему по характеристикам модели можно получать все существенные для данной задачи характеристики натурного объекта умножением на масштабные коэффициенты. Физическая модель отличается от натурного объекта своими размерами, но процессы, совершающиеся в ней, по своей природе не отличаются от процессов, происходящих в натуре (то есть это копия физически реальной системы), например, модели самолетов и их испытания в аэродинамических трубах. Физическое моделирование целесообразно в тех случаях, когда исследовать влияние изменения конструктивных параметров на те или другие процессы на натурном объекте очень трудоемко и дорого либо вовсе невозможно.

Другим видом вещественного моделирования является моделирование по аналогии,при котором модель и натурный объект или явление имеют различную физическую природу, но описываются однотипными уравнениями. Моделирование по аналогии гораздо проще и дешевле физического, так как оно может осуществляться на ЭВМ или с помощью электрических или иных моделей. Однако для исследуемого процесса не всегда удается получить необходимое аналитическое выражение, а без этого моделирование по аналогии невозможно.

В качестве примера моделирования по аналогии рассмотрим колебания вагона на рессорах. Упрощенная схема механической системы вагона представляет собой тело массы m, установленное на пружину с коэффициентом жесткостиCп, как это показано на рисунке 5.1,а. Свободные колебания такой системы описываются уравнением

(5.1)

где – вертикальная координата центра масс вагона.

Рисунок 5.1 – Механическая модель и электрический аналог

Уравнения электрических колебаний в контуре, включающем конденсатор с электрической емкостью Cки катушку индуктивностьюL, схема которого представлена на рисунке 5.1,б, описываются уравнением

(5.2)

где q– заряд на одной из обкладок конденсатора.

Если в уравнениях (5.1) и (5.2) сделать подстановки

,

то оба уравнения примут одинаковую форму

Следовательно, существует аналогия электрической и механической систем,причем  имеет смысл круговой частоты собственных колебаний, масса механической системы m соответствует индуктивности L, а коэффициент жесткостипружиныCпсоответствует величине, обратной электрической емкостиCк.

Под математическим моделированиемпонимается процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики исследуемого натурного объекта или процесса. Математическая модель представляет собой систему математических соотношений – формул, функций, уравнений, описывающих те или иные стороны изучаемого объекта, явления, процесса. При этом подобие физических процессов модели и оригинала не сохраняется. Вид математической модели зависит как от природы реального объекта, так и от задач исследования и требуемой точности решения. Математическое моделирование, методика которого рассмотрена в разделе 7, относится к воображаемому, логическому моделированию.

В настоящее время широко используются такие виды математического моделирования, как структурное, цифровое, функциональное.

Первым этапом структурногомоделирования является создание математических моделей отдельных частей исследуемого объекта или процесса. В результате их объединения в единую систему и расположения в определенной последовательности с учетом взаимодействий между частями получается математическая модель структурного типа.

При цифровоммоделировании элементы, производящие математические операции, являются дискретными. На современном этапе развития техники и информационных технологий такое моделирование выполняется с помощью ЭВМ, поэтому его также называюткомпьютерным моделированием. Преимуществом цифровых моделей является возможность получения результатов с высокой точностью.

Функциональноемоделирование – это моделирование, осуществляемое на установках, в которых комплекс моделируемых явлений не только не сохраняет физическую природу, но может и не описываться формально одинаковыми уравнениями. При функциональном моделировании подобными считаются явления, которые в каком-то смысле, в отношении каких-то частных процессов или отдельных их сторон дают похожие результаты.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *