lect1
Лекция 1
Основные характеристики и области применения ЭВМ различных классов
Определение ЭВМ
Определение.ЭВМ (электронно-вычислительная машина) — это комплекс технических и программных средств, предназначенные для автоматизации подготовки и решения задач пользователей.
Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ.
Определение. Архитектура ЭВМ — это многоуровневая иерархия аппаратно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение.
Обобщенная структура ЭВМ
На рис. 1 приведена обобщенная структурная схема ЭВМ.
Рис. 1. Обобщенная структурная схема ЭВМ.
Принцип действия обычной ЭВМ можно считать копией обычного процесса вычислений, например, с помощью калькулятора.
Этапы вычислений:
1. Определение и задание порядка вычислений.
2. Задание исходных данных.
3. Выполнение вычислений (для получения промежуточных результатов).
4. Получение конечного результата.
В основе функционирования любой ЭВМ лежат два фундаментальных понятия в вычислительной технике:
1. Понятие алгоритма.
2. Принцип программного управления.
Определение.Алгоритм – некоторая однозначно определенная последовательность действий, состоящая из формально заданных операций над исходными данными, приводящая к решению за определенное число шагов.
Свойства алгоритмов:
1. Дискретность алгоритма (действия выполняются по шагам, а сама информация дискретна).
2. Детерминированность (сколько бы раз один и тот же алгоритм не реализовывался для одних и тех же данных – результат один и тот же).
3. Массовость (алгоритм «решает задачу» для различных исходных данных из допустимого множества и дает всегда правильный результат).
Программа.Описание алгоритма на каком-либо языке.
Принцип программного управления был впервые сформулирован венгерским математиком и физиком Джоном фон Нейманом в 1946 году.
Принцип программного управления включает в себя несколько архитектурно-функциональных принципов:
1. Любой алгоритм представляется в виде некоторой последовательности управляющих слов – команд. Каждая отдельная команда определяет простой (единичный) шаг преобразования информации.
2. Принцип условного перехода. В процессе вычислений в зависимости от полученных промежуточных результатов возможен автоматический переход на тот или иной участок программы.
3. Принцип хранимой команды. Команды в ЭВМ представляются в такой же кодируемой форме, как и любые данные и хранятся в таком же оперативном запоминающем устройстве. Это означает, что если рассматривать содержимое памяти, то без какой-либо команды невозможно различить данные и команды. Следовательно, любые команды можно принципиально обрабатывать как данные (информация в ЭВМ отличается не представлением, а способом ее использования).
4. Принцип двоичного кодирования.
5. Принцип иерархии запоминающих устройств.
Поколения ЭВМ
В течение всего периода эволюции компьютерных систем прослеживается тенденция к повышению скорости обработки информации процессором, уменьшение физических размеров компонентов, росту объема памяти и повышению пропускной способности каналов ввода-вывода.
Не отрицая того факта, что одной из причин повышения производительности процессоров явился прогресс в области микроэлектроники, в частности миниатюризация электронных компонентов, все же отметим, что не меньшее, если не большее, влияние на этот процесс, особенно в последние годы, оказали новые идеи в отношении структурной организации процессора, в частности широкое использование принципов конвейерной и параллельной обработки и внедрение технологии предпочтительного выбора направления ветвления программы, т.е. выполнение условных переходов на основании прогнозных оценок еще до формирования условий перехода. Все эти идеи преследуют одну цель – максимально сократить время простоя процессора.
Важнейшей проблемой, с которой сталкивается любой конструктор компьютерных систем, является достижение баланса характеристик производительности отдельных компонентов системы, т.е. такой подбор компонентов, при котором ни один компонент не простаивает, дожидаясь, пока за ним «поспеют» другие. В частности, производительность процессора растет быстрее, чем быстродействие оперативной памяти. Конструктор имеет в своем арсенале множество методов, позволяющих свести на нет отрицательный эффект такого несоответствия, включая использование промежуточной кэш-памяти, расширение пропускной способности магистрали между процессором и памятью, применение элементов памяти с более сложной логической организацией.
Изложение материала начнем с краткого экскурса в историю развития вычислительной техники. Помимо познавательного интереса имеется еще и практический интерес к истории. Мы попытаемся, рассматривая процесс эволюции компьютерных систем, проследить за тем, как по мере совершенствования элементной базы менялись взгляды на структурную организацию и архитектуру ЭВМ.
Первые ЭВМ появились немногим более 50 лет назад. В соответствии с элементной базой и уровнем развития программных средств выделяют четыре поколения ЭВМ, краткая характеристика которых приведена в таблице:Параметры сравнения | Поколения ЭВМ | |||
первое | второе | третье | четвертое | |
Период времени | 1946 — 1959 | 1960 — 1969 | 1970 — 1979 | с 1980 г. |
Элементная база (для УУ, АЛУ) | Электронные (или электрические) лампы | Полупроводники (транзисторы) | Интегральные схемы | Большие интегральные схемы (БИС) |
Основной тип ЭВМ | Большие | Малые (мини) | Микро | |
Основные устройства ввода | Пульт, перфокарточный, перфоленточный ввод | Добавился алфавитно-цифровой дисплей, клавиатура | Алфавитно-цифровой дисплей, клавиатура | Цветной графический дисплей, сканер, клавиатура |
Основные устройства вывода | Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод | Графопостроитель, принтер | ||
Внешняя память | Магнитные ленты, барабаны, перфоленты, перфокарты | Добавился магнитный диск | Перфоленты, магнитный диск | Магнитные и оптические диски |
Ключевые решения в ПО | Универсальные языки программирования, трансляторы | Пакетные операционные системы, оптимизирующие трансляторы | Интерактивные операционные системы, структурированные языки программирования | Дружественность ПО, сетевые операционные системы |
Режим работы ЭВМ | Однопрограммный | Пакетный | Разделения времени | Персональная работа и сетевая обработка данных |
Цель использования ЭВМ | Научно-технические расчеты | Технические и экономические расчеты | Управление и экономические расчеты | Телекоммуникации, информационное обслуживание |
ЭВМ 1-го поколения
ЭВМ первого поколения обладали небольшим быстродействием в несколько десятков тыс. оп./сек. Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение.
Языков программирования как таковых еще не было, и для кодирования своих алгоритмов программисты использовали машинные команды или ассемблеры. Это усложняло и затягивало процесс программирования. К концу 50-х годов средства программирования претерпевают принципиальные изменения: осуществляется переход к автоматизации программирования с помощью универсальных языков и библиотек стандартных программ.
ЭВМ 2-го поколения
Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ. Один транзистор уже способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а магнитную ленту начали использовать как для ввода, так и для вывода информации. В середине 60-х годов получило распространение хранение информации на дисках.
Получает дальнейшее развитие принцип автономии – он реализуется уже на уровне отдельных устройств, что выражается в их модульной структуре. Устройства ввода-вывода снабжаются собственными устройствами управления (УУ) (называемыми контроллерами), что позволило освободить центральное УУ от управления операциями ввода-вывода. В ЭВМ 2-го поколения добавился алфавитно-цифровой дисплей, появилась клавиатура.
Принципиальным изменением в структуре ЭВМ стало добавление аппаратного блока обработки чисел в формате с плавающей запятой.
Начинается разработка программного обеспечения на базе библиотек стандартных программ, обладающих свойством переносимости, т.е. функционирования на ЭВМ разных марок. Наиболее часто используемые программные средства выделяются в пакеты прикладных программ для решения задач определенного класса. Создаются специальные программные средства — системное программное обеспечение, изначально предназначенное для ускорения и упрощения перехода процессором от одной задачи к другой.
ЭВМ 3-го поколения
В 70-х годах возникают и развиваются ЭВМ третьего поколения. Данный этап — переход к интегральной элементной базе. Одна интегральная схема способна заменить тысячи транзисторов. В результате быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.
ЭВМ этого поколения создавались на основе принципа унификации, что позволило использовать вычислительные комплексы в различных сферах деятельности.
Расширение функциональных возможностей ЭВМ увеличило сферу их применения, что вызвало рост объема обрабатываемой информации и поставило задачу хранения данных в специальных базах данных и их ведения. Так появились первые системы управления базами данных – СУБД.
Изменились формы использования ЭВМ: введение удаленных терминалов (дисплеев) позволило широко и эффективно внедрить режим разделения времени и за счет этого приблизить ЭВМ к пользователю и расширить круг решаемых задач.
Обеспечить режим разделения времени позволил новый вид операционных систем, поддерживающих многозадачность — способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ. Пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при последовательном выполнении программ (однопрограммный режим), а выполняет другую программу (многопрограммный режим).
В развитии отечественной вычислительной техники особое место занимает машина БЭСМ-6. Машина вступила в строй в 1967 г. Ее быстродействие — около 1 млн. операций/сек. Здесь впервые в отечественной практике и независимо от зарубежных разработок был применен принцип конвейерного выполнения команд. На БЭСМ-6
Рис. 2. ЭВМ БЭСМ-6
ЭВМ 4-го поколения
В конце 70-х годов развитие микроэлектроники привело к созданию возможности размещать на одном кристалле тысячи интегральных схем. Так появились большие интегральные схемы и 4-е поколение ЭВМ, для которого характерны создание серий недорогих микро-ЭВМ, разработка супер-ЭВМ для высокопроизводительных вычислений.
Наиболее значительным стало появление персональных ЭВМ, что позволило приблизить ЭВМ к своему конечному пользователю. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки «дружественного» программного обеспечения. Возникают операционные системы, поддерживающие графический интерфейс, интеллектуальные пакеты прикладных программ. В связи с возросшим спросом на ПО совершенствуются технологии его разработки – появляются развитые системы программирования, инструментальные среды пользователя.
В середине 80-х стали бурно развиваться сети персональных компьютеров, работающие под управлением сетевых или распределенных ОС.
Основные характеристики ЭВМ
Каждая ЭВМ имеет свои технические и эксплуатационные характеристики: быстродействие, производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.
Быстродействие— одна из важнейших характеристик ЭВМ, которая характеризуется числом команд, выполняемых ЭВМ за одну секунду. Поскольку в состав команд ЭВМ включаются операции, различные по длительности выполнения и по вероятности их использования, то имеет смысл характеризовать его или средним быстродействием ЭВМ, или предельным (для самых “коротких” операций типа “регистр-регистр”). Современные вычислительные машины имеют очень высокие характеристики по быстродействию, измеряемые миллиардами операций в секунду.
Производительность— объем работ, осуществляемых ЭВМ в единицу времени. Реальное или эффективное быстродействие, обеспечиваемое ЭВМ, значительно ниже, и оно может сильно отличаться в зависимости от класса решаемых задач. Сравнение по быстродействию различных типов ЭВМ, резко отличающихся друг от друга своими характеристиками, не обеспечивает достоверных оценок. Поэтому очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительности. Например, можно определять этот параметр числом задач, выполняемых за определенное время. Однако сравнение по данной характеристике ЭВМ различных типов может вызвать затруднения. Поскольку оценка производительности различных ЭВМ является важной практической задачей, были предложены к использованию относительные характеристики производительности, рассчитываемые на основе тестов: наборов типовых задач по работе с целыми числами, с плавающей точкой, графикой, видео. Результаты одного из таких тестов приведены на рис. 1.
Рис. 1. Сравнение процессоров на основе теста SiSoftSandra
Емкость запоминающих устройств— измеряется количеством структурных единиц информации, которое может одновременно находиться в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти. Наименьшей структурной единицей информации является бит — одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения — байтах (восемь бит). Следующими единицами измерения служат 1 Кбайт = 1024 байта, 1 Мбайт = 1024 Кбaйтa, и т.д. 1 Мбайт, 1 Гбайт. При этом отдельно характеризуют емкость собственной памяти процессора (кэш-память), оперативной памяти и емкость внешней памяти.
Надежность— это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени. Высокая надежность ЭВМ закладывается в процессе ее производства. Переход на новую элементную базу — сверхбольшие интегральные схемы (СБИС) резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом. В современных ЭВМ хорошо продуманы компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли), модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.
Точность— возможность различать почти равные значения. Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом (2 байта), двойным словом и т.п.). Во многих применениях ЭВМ не требуется большой точности, например, при обрабатывании текстов и документов, при управлении технологическими процессами. В этом случае достаточно использовать 8-и, 16- разрядные двоичные коды. При выполнении сложных расчетов требуется использовать более высокую разрядность (32, 64 и даже более). Поэтому все современные ЭВМ имеют возможность работы с 16- и 32- разрядными машинными словами. С помощью средств программирования языков высокого уровня этот диапазон может быть увеличен в несколько раз, что позволяет достигать еще большей точности.
Основные области применения ЭВМ различных классов
В соответствии с Законом Мура основные характеристики компьютеров улучшаются приблизительно в 2 раза каждые 2 года. В этих условиях любая предложенная классификация ЭВМ очень быстро устаревает и нуждается в корректировке. Например, в классификациях десятилетней давности широко использовались названия мини-, миди- и микроЭВМ, которые почти исчезли из обихода.
Существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ:
1. Применение ЭВМ для автоматизации вычислений.Научно-техническая революция во всех областях науки и техники постоянно выдвигает новые научные, инженерные, экономические задачи, которые требуют проведения крупномасштабных вычислений (задачи проектирования новых образцов техники, моделирования сложных процессов, атомная и космическая техника и др.). Отличительной особенностью этого направления является наличие хорошей математической основы, заложенной развитием математических наук и их приложений. Первые, а затем и последующие вычислительные машины классической структуры в первую очередь и создавались для автоматизации вычислений.
Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и в настоящее время она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др.
2. Применение ЭВМ в системах управления.Это направление родилось примерно в 60-е годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Новое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки. Сопряжение с каналами связи потребовало усложнения режимов работы ЭВМ, сделало их многопрограммными и многопользовательскими.
3. Применение ЭВМ для решения задач искусственного интеллекта. Напомним, что задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказательства теорем, машинного перевода текстов, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д. Это направление все больше набирает силу. Во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы. Для технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место сложнейшим вычислительным системам.
Уже это небольшое перечисление областей применения ЭВМ показывает, что для решения различных задач нужна соответственно и различная вычислительная техника. Поэтому рынок компьютеров постоянно имеет широкую градацию классов и моделей ЭВМ.
Классификация вычислительных систем
Супер ЭВМ
С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объемов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. В этом случае ЭВМ позволяет методами численного моделирования получить результаты вычислительных экспериментов, обеспечивая приемлемое время и точность решения, т.е. решающим условием необходимости разработки и применения подобных ЭВМ является экономический показатель “производительность/стоимость”. Дальнейшее развитие суперЭВМ связывается с использованием направления массового параллелизма, при котором одновременно могут работать сотни и даже тысячи процессоров.
Большие ЭВМ (mainframe)
Данные ЭВМ представляют собой многопользовательские машины с центральной обработкой, с большими возможностями для работы с базами данных, с различными формами удаленного доступа. Казалось, что с появлением быстропрогрессирующих персональных ЭВМ большие ЭВМ обречены на вымирание. Однако, они продолжают развиваться и выпуск их снова стал увеличиваться, хотя их доля в общем парке постоянно снижается. По оценкам IBМ, около половины всего объема данных в информационных системах мира должно храниться именно на больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов. Большими ЭВМ комплектуются ведомственные, территориальные и региональные вычислительные центры. В России основными потребителями являются государственные организации и крупные компании федерального уровня, такие, как РЖД (система резервирования мест и продажи билетов) или АвтоВАЗ. В свое время мейнфреймы были единственной вычислительной платформой, способной обслуживать предприятия такого масштаба, и эта платформа активно развивалась. За рубежом мейнфрейм считается классическим решением для определенного круга задач, например, в финансовой сфере.
Средние ЭВМ
Средние ЭВМ используются для управления сложными технологическими производственными процессами, ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов, рабочих станций для работы с графикой. Существуют специальные ЭВМ, предназначенные в первую очередь для работы в финансовых структурах. В этих машинах особое внимание уделяется сохранности и безопасности данных.
Персональные ЭВМ
Персональные и профессиональные ЭВМ, позволяют удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ также строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.
Встраиваемые микропроцессоры
Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Они находят все большее применение в бытовой технике (сотовых телефонах, телевизорах, музыкальных центрах, микроволновых печах и т.д.), в городском хозяйстве (энерго-, тепло- , водоснабжении, регулировке движения транспорта и т.д.), на производстве (робототехнике, управлении технологическими процессами).
8
studfiles.net
Поколения ЭВМ
Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.
Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).
Содержание:
1. ЭВМ первого поколения
2. ЭВМ второго поколения
3. ЭВМ третьего поколения
4. ЭВМ четвертого поколения
5. ЭВМ пятого поколения
Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.
Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.
ЭВМ первого поколения
Они были ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.
Например, одна из первых ЭВМ – ENIAC представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.
Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор.
ЭВМ второго поколения
Транзисторы
В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.
В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.
В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.
В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.
ЭВМ третьего поколения
Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС).
Микросхемы
ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.
В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.
Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов.
Микропроцессор
В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.
Микропроцессор – это миниатюрный мозг, работающий по программе, заложенной в его память.
Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.
ЭВМ четвертого поколения
Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.
Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.
С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.
ЭВМ пятого поколения
Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.
Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:
- 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
- 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
- 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
- 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).
Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.
Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.
P.S. Статья закончилась, но можно еще прочитать:
1. Аналитическая машина Бэббиджа
2. Леди Ада Лавлейс и первая компьютерная программа
3. Может ли компьютер быть умнее человека?
4. Пять возможностей сотовых телефонов, которых не хватает в наши дни
5. Виртуальная интерактивность: что такое VR, MR, AR и их отличия
Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик.
Уже более 3.000 подписчиков
Важно: необходимо подтвердить свою подписку! В своей почте откройте письмо для активации и кликните по указанной там ссылке. Если письма нет, проверьте папку Спам.
Автор: Надежда
19 мая 2010
www.compgramotnost.ru
Размеры 1 поколения ЭВМ. Развитие вычислительной техники и поколения ЭВМ
Компьютеризация — явление, которое наблюдается сейчас, наверное, во всех странах мира. Ее темпы впечатляют. Интересно проследить то, в каких условиях она осуществлялась исторически. Можно ли сказать, что компьютеризация — результат планомерного развития технологий выпуска ЭВМ и программного обеспечения для них? Каковы исторические этапы технологического совершенствования компьютеров?
Что было до компьютеров?
Интересно узнать, какого типа устройства исторически предшествовали ЭВМ. Так, можно отметить, что в 17 веке легендарный французский ученый Паскаль изобрел, как считается, первую счетную машину, которая действовала по механическому принципу. В начале 19 века британский исследователь Бэббидж изобрел первую аналитическую машину. Спустя несколько десятилетий американский инженер Холлерит создал табулятор — электрическую машину, с помощью которой можно было подсчитывать статистические данные. Впоследствии разработки ведущих лабораторий мира в направлении создания устройств, близких к компьютерам в современном понимании, активно продолжались.
Первые компьютеры
Один из первых в мире компьютеров был изобретен другим американским исследователем, Бушем, в 1930 году. История ЭВМ, представляющих собой полноценные цифровые устройства, многими учеными отсчитывается с 1944 года, когда американский профессор Айкнем сконструировал компьютер «Марк-1». Фактически это был девайс, относящийся к ЭВМ 1 поколения. Какие его особенности можно отметить? Прежде всего, наверное, габариты конструкции. Размеры 1 поколения ЭВМ были выдающимися. Так, «Марк-1» имел длину порядка 15 метров, высоту — около 2,5 м. Производительность первого цифрового компьютера по современным меркам была относительно скромной, но его роль в истории мировой индустрии компьютерной техники трудно переоценить. В 1946 году американские военные сконструировали компьютер «Эниак». Размеры 1 поколения ЭВМ на примере данного девайса могут показаться еще более внушительными. Компьютер «Эниак» обладал длиной порядка 30 м и весил 30 тонн.
Нас будут интересовать, конечно, не только размеры 1 поколения ЭВМ, но и иные характеристики соответствующего типа машин. Рассмотрим их, а также последующую историю компьютеров подробнее.
Особенности ЭВМ 1 поколения
Функционировали ЭВМ 1 поколения на основе электронных ламп — прибора, который работает за счет изменения потока частиц, движущихся от катода к аноду. Основной принцип соответствующего перемещения — термоэлектронная эмиссия. С самого начала компьютеры стали конструироваться по принципу распределения логических команд на 0 и 1. Данная схема реализуется до сих пор. Каким же образом она функционировала, когда в качестве основного компонента ПК использовались лампы? Очень просто. На входе лампы образовывалось напряжение, например 2 В. На выходе — меньше, например 1 В. Первое состояние лампы фиксировалось как 1, второе — как 0. Сочетание данных состояний на основе совокупности из десятков тысяч ламп формировало машинный код.
Ламповые компьютеры, то есть те, которые относятся к 1 поколению, могли выполнять порядка 20 тыс. операций в секунду. Много это или не очень? Для сравнения, показатель для современных ПК — миллиарды операций в секунду. Но базовые задачи тех лет, в том числе и в военной сфере, характеристики ЭВМ первого поколения вполне позволяли выполнять.
Компьютеры рассматриваемого типа не характеризовались высокой надежностью. Просто потому, что лампы часто перегорали, их нужно было менять. О гигантских размерах компьютеров мы уже сказали выше. Это предопределяло очень большие трудности с их транспортировкой, с оптимизацией их расположения в здании. Стоимость ЭВМ первого поколения была очень высокой — их приобретение могли позволить себе только крупные бизнесы и правительственные структуры с большим бюджетом. Также ламповые компьютеры характеризовались высокими эксплуатационными расходами — главным образом, в части энергопотребления. Работа на них требовала привлечения высококвалифицированных кадров с последующей выплатой им большой зарплаты. Человек, знающий хотя бы устройство ЭВМ, не говоря об умении программировать компьютер, был востребованным и дорогостоящим специалистом.
Специфика ЭВМ первого поколения также в том, что на данных машинах задействовались отдельные языки программирования. К тому же набор машинных команд был достаточно простым. Как таковые программы — в привычном нам понимании — при работе с ЭВМ соответствующего типа не использовались. Это обуславливалось не только скромной производительностью компьютеров, но также и достаточно низкой технологичностью запоминающих устройств — чаще всего это были перфокарты и магнитные ленты, которые совершенно несопоставимы по скорости работы с привычными нам дисками.
Однако к отмеченным неудобствам инженеры начали активно адаптироваться — главным образом посредством разработки различных алгоритмов автоматизации работы с машинным кодом. Несмотря на низкую производительность ЭВМ первого поколения, эффективность их эксплуатации все же постепенно росла.
ЭВМ 2 поколения
Мировая компьютерная индустрия после отмеченных изобретений продолжила активно развиваться. Изобретение «Марк-1», «Эниака» и других машин — это было только начало. ЭВМ 2 поколения появились уже в начале 60-х годов. Их основная особенность — в них вместо ламп были применены транзисторы. В результате производительность машин выросла. Кроме того, мы помним, что размеры 1 поколения ЭВМ были внушительны. Машины на транзисторах, в свою очередь, существенно уменьшились. Насколько явным оказалось преимущество задействования в структуре компьютеров соответствующих технологических решений? Достаточно лишь сказать, что 1 транзистор был способен заменить порядка 40 ламп. Совершенствовались также и носители информации. Устройство ЭВМ второго поколения могло предполагать использование магнитных дисков, приближенных по структуре и концепции к тем девайсам, которые привычны современному пользователю.
С точки зрения задействования программного обеспечения мировая компьютерная индустрия также сделала шаг вперед, благодаря возможностям соответствующего типа машин. Появились языки, относимые к категории высокого уровня. Программистами были разработаны трансляторы — средства, с помощью которых соответствующие алгоритмы переводились на язык, используемый в машинных командах ЭВМ. Были также реализованы принципы опережающего выполнения некоторых сценариев компьютерных программ. Стали появляться библиотечные приложения, различные мониторные системы, ставшие прообразами современных ОС.
Вместе с тем, несмотря на некоторые попытки унификации задействования программных алгоритмов в различных машинах, разные ЭВМ характеризовались ограниченной совместимостью. Объединить их, условно говоря, в единую сеть и выстроить на ее основе корпоративную информационную систему было очень сложно.
ЭВМ 3 поколения
История ЭВМ 3 поколения начинается с машин, в конструкции которых стали применяться интегральные схемы, каждая из которых, как выяснилось, могла заменить около 1000 транзисторов. Производительность компьютеров значительно выросла. Появилась возможность запускать на ЭВМ несколько программных алгоритмов одновременно. Что такое интегральная схема? Это кристалл из кремния, который имеет площадь порядка 10 кв. мм. По уровню производительности, как было подсчитано, одна ИС фактически была равна компьютеру «Эниак». В числе самых известных компьютеров 3 поколения — ЭВМ, разработанные компанией IBM — машины System 360.
ЭВМ рассматриваемого типа характеризовались гораздо большей степенью взаимной совместимости, чем устройства, рассмотренные нами выше, в том числе и в аспекте программного обеспечения. В компьютерах 3 поколения были реализованы первые полноценные операционные системы, способные выполнять несколько задач одновременно. Многие из аппаратных функций начали передаваться на программный уровень.
ЭВМ 4 поколения
В 70-х годах в массовое производство были запущены так называемые большие интегральные схемы. Какую их особенность можно отметить? Прежде всего ту, что их производительность соответствовала примерно 1000 обычных интегральных схем. В итоге мировая компьютерная индустрия получила возможность выпускать устройства, по размерам и производительности сопоставимые с теми, которыми мы привыкли пользоваться сегодня.
Благодаря повышению производительности фабричных линий по выпуску больших интегральных схем и иных ключевых компонентов ЭВМ, компьютеры постепенно становились дешевле. Если первые и вторые (в 50-е и 60-е годы) поколения ЭВМ были доступны, как мы отметили выше, главным образом, только крупным бизнесам и госструктурам, то в 1970-е ЭВМ стали активно покупать обычные граждане.
Факторы компьютеризации
Компьютеризация стала массовым явлением, особенно с появлением интернета в конце 80-х годов. Ее темпы были тем более динамичными, чем ниже становилась цена девайсов и меньше — их размер. Так, первые ПК, по многим признакам и технологической структуре аналогичные тем, что привычны нам сегодня, появились в середине 70-х и начале 80-х годов. В числе таковых девайсов — IBM PC, ставший прообразом самой распространенной сегодня компьютерной платформы. Они стали ближайшим конкурентом ПК, которые уже активно выпускались компанией Apple. Принципиальная разница между ними — в открытости концепции IBM и закрытости платформы от Apple. С точки зрения программно-аппаратной структуры разница между соответствующими типами ПК в целом невелика. В структуре IBM-платформы присутствуют такие ключевые компоненты, как процессор, ОЗУ, жесткий диск, видео- и звуковая карта, материнская плата. При этом они могут быть заменены на другие — как вариант, более производительные.
Современное поколение компьютеров
Технологический задел, который был заложен инженерами в 70-е годы, оказался настолько значительным, что дальнейшее развитие ЭВМ эксперты и аналитики характеризуют как проходящее в рамках того же 4 поколения. То есть современные высокопроизводительные ПК функционируют, в целом, по тем же принципам, что и устройства 40-летней давности. В отдельных аспектах, таких как, например, размеры ЭВМ, современные компьютеры, безусловно, видятся существенно более технологичными. В устройстве величиной с небольшую тетрадь умещаются вычислительные мощности, значительно превышающие те, что стояли, к примеру, в первых ПК от Apple в 70-е годы.
Преемственность концепций
Но концептуально ПК, используемые нами сегодня, функционируют по схемам, впервые внедренным в ЭВМ 4 поколения. Нет никаких четких критериев, которые бы позволили сказать, что, условно говоря, первый IBM PC и современный ноутбук iMac — это ЭВМ разных поколений. Производительность значительно различается, но концепция, в целом, одна и та же.
На основе платформы, предложенной IBM, реализовано большинство современных десктопов, ноутбуков, моноблоков. По многим критериям также и мобильные девайсы — смартфоны и планшеты — вполне соответствуют IBM-платформе, появившейся в 70-е годы. Так, в каждом из них, как и в ПК, есть процессор, ОЗУ, устройство для хранения данных — аналог жесткого диска.
Трудно сказать даже, что принципиально вырос уровень комфорта пользования компьютерами, если сопоставлять первые образцы ПК 4 поколения и современные модели. Базовые аппаратные элементы управления ЭВМ — клавиатура, мышь — в принципе, за долгие годы не менялись. Появились, конечно, всевозможные тачскрины, бесконтактные дисплеи и прочие экзотические решения. Но не все пользователи относятся к ним в достаточной мере положительно.
Усовершенствовались, конечно, и программные решения — ОС (на первых компьютерах 4 поколения стояли образцы, управляемые из командной строки, сегодня операционные системы включают функциональные графические интерфейсы), прикладные виды ПО. Первые виды соответствующих программ в 70-е годы были очень простыми по структуре.
Сегодня это мощные инструменты реализации производственных задач. Если говорить об играх, то разница также заметна. В 70-е годы это были простейшие аркады, сегодня они позволяют совершать увлекательные погружения в виртуальное пространство. Однако созданы игры, ОС и прикладное ПО по тем же алгоритмам, что и соответствующие решения в ранние годы разработки ЭВМ 4 поколения, часто на тех же языках программирования.
Сравнение поколений ЭВМ
Попробуем наглядно отобразить сравнительные характеристики поколений ЭВМ. Как это можно сделать? Вполне удобный вариант — сравнительная таблица поколений ЭВМ. Она может быть представлена в структуре, отражающей ключевую характеристику компьютера — производительность, а также технологическую базу, на основе которой осуществляются вычисления.
Поколение ЭВМ | Производительность (операций в секунду) | Технологическая база |
1 | Порядка 20 тыс. | Лампы |
2 | Порядка 200 тыс. | Транзисторы |
3 | Порядка 1-2 млн | Интегральные схемы |
4 | Порядка 2-3 млрд и более (современные модели ПК) | Большие интегральные схемы |
Таковы сравнительные характеристики поколений ЭВМ. Мы видим, насколько стремительно развивалась компьютерная техника. ЭВМ разных поколений — яркие примеры появления и успешного внедрения в производство самых инновационных и высокотехнологичных инженерных концепций — как на уровне аппаратных компонентов, так и в области программного обеспечения.
С одной стороны, мы можем сделать вывод о том, что компьютеризация — явление, которое развивалось постепенно, соотносительно с ростом производительности ПК, их удешевлением и облегчением пользования. Но есть точка зрения, по которой процесс, о котором идет речь, характеризуется 2 периодами, когда он шел действительно галопирующими темпами, а именно после появления ЭВМ 4 поколения, а также после превращения интернета в глобальную сеть. Эти два фактора и стали, по мнению ряда исследователей, ключевыми драйверами компьютеризации.
fb.ru
Поколения компьютеров: краткое описание
В соответствии с общепринятой методикой оценки развития вычислительной техники первым поколением считались ламповые компьютеры, вторым —транзисторные, третьим — компьютеры на интегральных схемах, а четвёртым — с использованием микропроцессоров.
Первое поколение ЭВМ (1948–1958) создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.
Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, «Стрела», Минск-1, Урал-1, Урал-2, Урал-3, М-20, «Сетунь», БЭСМ-2, «Раздан» (рис. 2.1).
ЭВМ первого поколения были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2–3 тысячи операций в секунду, емкость оперативной памяти – 2 кб или 2048 машинных слов (1 кб = 1024) длиной 48 двоичных знаков.
Второе поколение ЭВМ (1959–1967) появилось в 60-е гг. ХХ века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов (рис. 2.2, 2.3). Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.
Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития ПО.
Третье поколение ЭВМ (1968–1973). Элементная база ЭВМ – малые интегральные схемы (МИС), содержавшие на одной пластинке сотни или тысячи транзисторов. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент. Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ и резко снизить цены на аппаратное обеспечение. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличенное быстродействие, повышенную надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.
Четвертое поколение ЭВМ (1974–1982). Элементная база ЭВМ – большие интегральные схемы (БИС). Наиболее яркие представители четвертого поколения ЭВМ – персональные компьютеры (ПК). Связь с пользователем осуществлялась посредством цветного графического дисплея с применением языков высокого уровня.
Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что привело к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее ПО. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (ОС) (или монитора) – набора программ, которые организуют непрерывную работу машины без вмешательства человека
Пятое поколение ЭВМ (1990 – настоящее время) создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.
6. Организация компьютерных систем
Процессоры
На рис. 2.1 показана структура обычного компьютера с шинной организацией. Центральный процессор — это мозг компьютера. Его задача — выполнять программы, находящиеся в основной памяти. Он вызывает команды из памяти, определяет их тип, а затем выполняет одну за другой. Компоненты соединены шиной, представляющей собой набор параллельно связанных проводов, по которым передаются адреса, данные и сигналы управления. Шины могут быть внешними (связывающими процессор с памятью и устройствами ввода-вывода) и внутренними.
Рис. 2.1. Схема компьютера с одним центральным процессором и двумя устройствами ввода-вывода
Процессор состоит из нескольких частей. Блок управления отвечает за вызов команд из памяти и определение их типа. Арифметико-логическое устройство выполняет арифметические операции (например, сложение) и логические операции (например, логическое И).
Внутри центрального процессора находится память для хранения промежуточных результатов и некоторых команд управления. Эта память состоит из нескольких регистров, каждый из которых выполняет определенную функцию. Обычно размер всех регистров одинаков. Каждый регистр содержит одно число, которое ограничивается размером регистра. Регистры считываются и записываются очень быстро, поскольку они находятся внутри центрального процессора.
Самый важный регистр — счетчик команд, который указывает, какую команду нужно выполнять следующей. Название «счетчик команд» не соответствует действительности, поскольку он ничего не считает, но этот термин употребляется повсеместно1. Еще есть регистр команд, в котором находится выполняемая в данный момент команда. У большинства компьютеров имеются и другие регистры, одни из них многофункциональны, другие выполняют лишь какие-либо специфические функции.
7. Программное обеспечение. Основная память.
Вся совокупность программ, хранящихся на всех устройствах долговременной памяти компьютера, составляет его программное обеспечение (ПО).
Взаимодействие между пользователем, прикладным программным обеспечением, операционной системой и аппаратным обеспечением (оборудованием). |
— системное ПО;
— прикладное ПО;
— инструментальное ПО.
infopedia.su
Этот сайт предназначен, прежде всего, людям, ностальгирующим по ушедшим РУССКОМУ СЛОВУ, Windows 3.1, ФОТОНУ, процессорам 486SX и иже с ними. Конечно, времена должны идти вперед, но почему они обязательно должны уходить? StuhlbergR 2007 © |
Беседы о поколениях ЭВМН. Бусленко, В. Бусленко© Издательство «Молодая гвардия», 1977 г. Все настойчивее вторгаются электронные вычислительные машины в науку и в народное хозяйство. О зарождении этих машин, принципе их действия, их развитии и влиянии на жизнь человека расскажут член-корреспондент АН СССР Н. Бусленко и его сын кандидат технических наук В. Бусленко. ЭВМ первого поколения— Что же такое ЭВМ первого поколения? — Если ответить кратко, то это вычислительная машина на электронных лампах. — И из каких частей состоит эта машина? Каковы функции ее частей? Любая ЭВМ — это сложнейший электронный организм, способный производить разнообразнейшие действия. Как всякий организм, машина имеет своеобразный мозг — устройство управления. Команды мозга выполняют мышцы — арифметическое устройство и другие устройства ЭВМ. Много полезных сведений хранит память — запоминающее устройство. Наконец, для общения с окружающим миром есть у нее своеобразные глаза, уши, язык — устройства ввода и вывода информации. На всем этом стоит остановиться несколько подробнее. Арифметическое устройство. Само название подсказывает, что оно выполняет разнообразные арифметические действия: сложение, вычитание, умножение, деление, извлечение корня и т.д., а также логические операции, например, сравнение чисел, формирование признаков для выбора одной из ветвей вычислений и другие. Набор операций, производимых арифметическим устройством над двоичными числами, в принципе, различен для разных ЭВМ и определяется в основном особенностями конструкции, а также предполагаемыми сферами использования конкретной машины. Запоминающее устройство. Оно запоминает и выдает по первому требованию всю информацию, необходимую для решения задач. К запоминающему устройству предъявляют два требования: оно должно обладать высокой скоростью поиска и выдачи чисел и большой емкостью. Нетрудно заметить, что требования эти весьма противоречивы. Ведь чем больше размеры хранилища, тем труднее отыскать в нем данный конкретный адрес. Поэтому конструкторы пошли по пути создания двух типов запоминающих устройств: внутреннего и внешнего. Внутреннее запоминающее устройство — так называемая оперативная память ЭВМ — имеет сравнительно небольшую емкость и потому высокую скорость работы. Она хорошо согласуется со скоростью всех «быстрых» устройств ЭВМ, в первую очередь арифметического. Оперативная память состоит из отдельных ячеек, за каждой закреплен определенный номер: например, ячейка памяти под №869. Каждая ячейка хранит только одно число, а все запоминающие устройства представляют собой как бы соты, куда трудолюбивые электрические импульсы собирают информацию. Здесь хранятся исходные данные для решения задач, непосредственно используемые арифметическим устройством, программа, которая выполняется в данный момент, промежуточные результаты расчетов и т.д. Внешнее запоминающее устройство имеет значительно меньшую скорость работы, но практически неограниченную емкость. Как правило, это хранилище строится на магнитофонном способе записи и считывания информации: здесь используются магнитные ленты, магнитные барабаны и проч. Во внешней памяти хранятся большие массивы исходных данных, различная справочная информация и вообще все, что только может понадобиться в ее работе. Информация из внешней памяти может быть переписана в оперативную, из оперативной — во внешнюю. Идея использования нескольких уровней памяти не нова, она применяется повсеместно, напрмер, в работе студента: воспринимая на лекции услышанное, он записывает сведения в конспекте (внешняя память), а затем перед экзаменом повторяет, пытаясь набить свою оперативную память всеми сведениями из внешней. Однако, объема оперативной памяти, как всегда, конечно, не хватает, и последствия этого для студента хорошо известны. Устройство управления. Оно руководит последовательным выпонением программы вычислений, которая записана в памяти ЭВМ, а также управляет выполнением всех элементарных операций. Устройство ввода воспринимает информацию, нанесенную на перфокарты, и преобразует ее в электрические потенциалы разного уровня, соответствующие машинным символам 0 и 1. Эти сигналы затем передаются в запоминающее устройство. Устройство вывода выполняет обратную процедуру: преобразует числа, выводимые из машины в виде электрических импульсов, в совокупность пробивок на перфокартах или сочетания цифр и букв. Все рассмотренные нами устройства связаны между собой системой электрических магистралей и образуют собственно электронную вычислительную машину. Однако в состав ЭВМ входят и еще так называемые внешние устройства, которые хотя и не имеют прямой (электрической) связи с машиной, однако выполняют, пожалуй, наиболее важную функцию, обеспечивая общение человека с ЭВМ. Внешние устройства служат для подготовки исходных данных, для задания машине программы расчета, а также оформления результата работы машины в понятном для человека виде. Все внешние устройства, поскольку они ориентированы на работу непосредственно с человеком, функционируют значительно медленнее, чем сама ЭВМ. Поэтому, чтобы насытить ЭВМ информацией, обычно используют параллельно несколько работающих типовых комплектов устройств. В такой комплект входят перфоратор, контрольник и печатающее устройство. Перфоратор переводит информацию с языка человека на язык, который в состоянии воспринимать машина. Числа, набираемые на пульте перфоратора, кодируются в виде комбинаций пробивок на перфокартах. При нажатии на определенную клавишу, обозначающую десятичную цифру, индуцируются сигналы в обмотках соответствующих электромагнитов. Электромагниты срабатывают и воздействуют на специальные пуансоны, которые, заходя в гнезда, перфорируют (пробивают) отверстия в перфокартах. Каждая клавиша связана с обмотками определенного набора электромагнитов так, что перфоратор производит перевод чисел в двоичную систему. Контрольник. Легко представить, какую путаницу может внести в работу «идеально послушной» ЭВМ даже одно неверно пробитое отверстие. Контрольник призван по возможности исключить подобные ситуации. По своей конструкции он подобен перфоратору: та же клавиатура, на которой заново набирается вся информация, только вместо чистых перфокарт в него закладываются перфорированныею Перфокарта, отверстия которой в точности соответствуют набранной на клавиатуре информации, проходят беспрепятственно в специальный карман; при несовпадении зажигается красная лампочка, и сброс такой перфокарты блокируется. Печатающее устройство. Оно призвано перевести информацию, выводимую из ЭВМ, на язык, понятный человеку. По пробитым на перфокартах отверстиям печатается на узкой бумажной ленте колонка цифр. Числа, выводимые из машины в двоичном виде, при этом переводятся в десятичные. — Ну и сложная же это конструкция — ЭВМ! Пожалуй, сравнение с живым организмом не преувеличение… — Сколько же этой махине нужно электроэнергии? — Более ста киловатт! — Тогда это не простой организм, а целый электронный мамонт! И как хрупкий человек держит его в повиновении? — Самое смешное, что такой проблемы просто не существует. ЭВМ первого поколения послушна, как дитя. Более того, она совершенно беспомощна и без программы, заданной человеком, не сможет ступить ни шагу. Ее в буквальном смысле нужно вести за руку, говоря: ступи сюда, здесь будь осторожна, не споткнись, а теперь сюда… Вообще ЭВМ может производить лишь небольшое число элементарных операций, поэтому любая задача должна быть сведена к последовательному выполнению только этих элементарных действий. Каждая операция выполняется ЭВМ под воздействием определенного управляющего сигнала, так называемой команды. Команда — не что иное, как информация об операции, представленная в специальной форме. Она определяет действия машины в течение некоторого интервала времени. Команда состоит из кода операций (указания о том, что должна сделать машина) и адресов, указывающих, откуда машина должна взять и куда положить числа для выполнения операции. Адреса — это и есть номера ячеек запоминающего устройства. Рассмотрим пример сложения двух чисел: 7246+810. Команда для выполнения этой операции выглядит так:
По этой команде управляющее устройство ЭВМ выбирает из оперативной памяти содержимое ячейки под номером 100 (там хранится число 7246) и передает его в арифметическое устройство; затем из оперативной памяти выбирается содержимое ячейки под номером 200 (число 810) и также передается в арифметическое устройство; после этого туда передается и код операции «сложение» (01). Следующим шагом является выполнение операции, поименованной кодом, — в данном случае сложение чисел. Результат (сумма) передается в оперативную память и помещается в ячейку с номером 102. Следующий шаг — переход к команде с номером на 1 большим, чем данная. Она может приказать ЭВМ, например, разделить результат первой операции (8056) пополам или сложить с новым числом и т.д. Последовательность команд и образует программу действий машины на некоторый интервал времени. Программа расписывает работу ЭВМ по элементарным типовым шагам. Для каждой задачи программа составляется заранее и вводится в память вместе с исходными данными и другими необходимыми для ее расчета сведениями. После этого все требуемые расчеты выполняются машиной автоматически, без вмешательства извне. Процесс программирования — создания программы — можно рассматривать как перевод математической задачи с языка формул и уравнений на язык машины — язык элементарных типовых операций. Само программирование — сложный многошаговый процесс, включающий в себя определение порядка вычислений; решение вопроса о том, где и как разместить в машине материал, необходимый для решения задачи; исходные, промежуточные и окончательные данные, а также саму программу вычислений; составление и запись программы в условных обозначениях, принятых из данной ЭВМ. Вот как обычно осуществляется программирование. Пусть требуется составить программу вычисления среднего арифметического Z двух чисел x и y: Z=1/2(x+y)Порядок вычислений, очевидно, для данной задачи тривиален и задается самой формулой, а вот вопрос о расположении исходных и других данных следует, несомненно, решить. Пусть для простоты во всех примерах программа располагается в памяти машины в ячейках №101, 102, 103, 104… и т.д.; исходные данные для ее решения — в ячейках №201, 202… и т.д.; все промежуточные результаты — в ячейках №301, 302, 303…, а ответ (результаты расчета) — в ячейках №401, 402, 403… В рассматриваемом случае исходными данными будут: число y, хранящееся в ячейках №202, и число 2, которое можно поместить в ячейку №200. Промежуточные результаты пусть помещаются в ячейку №301, а окончательный результат (z) — в ячейке №401. Проведя так называемое «распределение памяти», приступают к третьему этапу программирования — записи самой программы вычислений. Первая команда. Содержимое ячейки №201 (x) сложить с содержимым ячейки №202 (y), сумму записать в ячейку №301. Вторая команда. Разделить полученную сумму (содержимое ячейки №301) на 2 (содержимое ячейки №200) и результат поместить в ячейку №401. Третья команда. Перевести число, хранящееся в ячейке №401, на перфокарты. Четвертая команда. Остановить работу машины (так называемый ОСТАНОВ). Чтобы приблизить эту программу к реальным условиям, надо ввести еще одну команду, которую следует поместить в самом начале программы. Команда ввода. Числа, набитые на перфокартах (2, y, x), ввести в ЭВМ и расположить в ячейках памяти начиная с №200. В условных числовых обозначениях такая программа внешне может выглядеть, например, следующим образом:
Итак, составленная программа для вычисления среднего арифметического двух чисел содержит 5 команд. Естественно возникают вопросы: не легче ли просто сложить и разделить эти числа ну хотя бы на бумаге? Каковы преимущества в использовании ЭВМ для решения этой задачи? Может быть, учебный пример и не должен демонстрировать никакого преимущества. Однако, определенные преимущества есть; они заключаются в том, что нигде в программе не сказано, с какими же конкретно числами производится вычисление: в ней лишь требуется, чтобы после ввода они располагались в определенных ячейках. Таким образом, создана в некотором роде универсальная программа для получения среднего арифметического любых двух наперед неизвестных чисел. А это уже что-то! Попробуем повысить универсальность программы. Пусть требуется получить среднее арифметическое трех чисел: Z=1/3(х1+х2+х3)Думается, что читатель легко сам сможет написать программу; она будет всего на одну команду длиннее предыдущей. Так же, как и программа для среднего четырех, пяти, шести и т.д. чисел будет состоять из 7, 8, 9 и т.д. команд соответственно. Таким образом, программа для получения среднего арифметического, например, ста чисел будет состоять из ста четырех команд. По-видимому, читатель стал сомневаться, а стоит ли так бездумно увеличивать число команд? Нельзя ли придумать что-нибудь пооригинальнее? Оказывается, можно! Вот программа, получения среднего арифметического ста чисел, которая ненамного длиннее исходной программы для двух чисел. При ее составлении будут использоваться логические возможности ЭВМ. Итак… Первая команда. Ввод ста чисел с перфокарт. Вторая команда. Сложить ячейку №201 (разумеется, ее содержимое) с ячейкой №202 и поместить сумму в ячейку №301. Третья команда. Сложить содержимое ячейки суммы №301 с содержимым следующей ячейки №203 и результат опять поместить в ячейку №301. В условных цифровых обозначениях эта команда выглядит так:
Вот эту команду с изменением второго адреса и следует повторить 97 раз (сто минус три), чтобы получить требуемую сумму. Второй адрес (третья колонка) при этом пробегает значения от №203 через №204, №205 и т.д. до №300. Чтобы эта команда все время принимала тот вид, который требуется, ее нужно как-то модифицировать, то есть соответствующим образом изменять. Для этого неплохо вспомнить, что команда — это тоже число, расположенное в определенной ячейке, например, в нашем случае в ячейке №103. Если сложить это число (эту команду) со специальной константой, содержащей одну единицу во втором адресе (000 001 000 00), то оно изменяется как раз так, как нужно. Действительно
Таким образом, следующая команда (№104) будет иметь такой вид: сложить число (команду), стоящее в ячейке №103, с константой, находящейся в ячейке №501, и результат записать снова в ячейку №103.
Теперь нужно обеспечить повторение этой процедуры необходимое число раз (в нашем случае 97), то есть определить, когда следует возвращаться на суммирование, а потом перейти к делению. Такое разветвление в программе можно реализовать с помощью двух команд: команды подготовительной и команды условного перехода. Первая должна вырабатывать признак, при значении которого, равном 1, будет осуществляться переход новой ветви программы, а при 0 — продолжение старой. Чтобы реализовать это разветвление, потребуется подсчитывать число повторений цикла в данный момент и сравнивать его с заданным числом повторений. При несовпадении формировать признак, равный 0, при совпадении — 1. Разветвление счета, реализуемое при помощи команды условного перехода, широко применяется на практике для решения различных логических задач. В рассматриваемом же случае для организации циклического счета обычно с успехом применяется так называемая команда цикла, которая позволяет повторять команду программы, начиная с указанного номера, заданное число раз. Таким образом, описанная выше программа с использованием команды цикла станет еще короче. Другими словами, программа определения среднего арифметического ста чисел окажется ненамного длиннее программы усреднения двух чисел. В этом и заключается изюминка программного управления. Человек задает ЭВМ лишь принцип, а она сама реализует этот принцип в любой (конечной) последовательности данных. Стоит заметить, что в данном конкретном примере число 100 никак не фигурирует в самой программе, это число повторений цикла находится в определенной ячейке и может быть заменено любым другим — тысячей, миллионом и т.д. Программа от этого не изменится, увеличится лишь время ее реализации на ЭВМ. В программировании получается, таким образом, как в известной сказке: пойди туда, не знаю, куда (будет указано в исходных данных), принеси то, не знаю что (указан лишь номер ячейки, и неизвестно, что за число там окажется). В результате всех проведенных действий создана универсальная программа для нахождения среднего арифметического последовательности чисел произвольной длины. Это поистине замечательный результат! Отныне любую задачу нахождения среднего арифметического можно решать по нашей программе с помощью ЭВМ. Программы подобного типа, предназначенные для решения стандартных, часто встречающихся задач, называются стандартными программами. Нет никакого смысла писать их заново, гораздо разумнее размножить такие программы и разослать их во все вычислительные центры. Там их поместят в библиотеку стандартных программ и будут использовать при первой необходимости. Кроме рассмотренных здесь, существует много других полезных вспомогательных команд; все они призваны помочь довести смысл задачи до «разума» машины и свести при этом по возможности к минимуму число команд и объем используемой памяти. Само же программиррование, как это видно, процесс довольно кропотливый, требующий внимания, сосредоточенности и терпения. Его можно было бы сравнить, пожалуй, с вышиванием — настолько это тонкая и художественная работа. Наверное, поэтому женщины, начиная от первой программистки — соратницы Ч. Бэбиджа леди Лавлейс и до наших дней, отлично справляются с программированием. [1] [2]Подраздел «Беседы о поколениях ЭВМ» |
Большинство предоставленного здесь материала является цитированием со старых номеров компьютерных журналов, таких, как «Мир ПК» или «Компьютерра». К сожалению, все мои попытки связаться с этими изданиями по поводу вопроса о цитировании были безуспешны. Издания упорно хранили молчание. Что я разрешил себе расценивать как знак согласия, указывая, тем не менее, повсюду как выходные данные издания (с работающей ссылкой на Интернет-представительство), так и автора публикации. Тем более, что, в силу срока давности этих публикаций, вряд ли материал можно рассматривать как коммерческий или рекламный, пусть даже названия фирм здесь и присутствуют (уж без этого никуда). Ежели появятся какие вопросы по оному поводу, прошу издания связаться со мной Райво Штулберг |
sht-rajvo.narod.ru
Содержание раздела:Поколения ЭВМ1948 — 1958 гг., первое поколение ЭВМ1959 — 1967 гг., второе поколение ЭВМ 1968 — 1973 гг., третье поколение ЭВМ 1974 — 1982 гг., четвертое поколение ЭВМ Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью. Сама история развития вычислительной техники представляет немалый интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроникой) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники. Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений — за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это прежде всего их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим — к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники. Первое поколение ЭВМ (1948 — 1958 гг.)Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, «Сетунь», БЭСМ-2, «Раздан». Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.В начало страницы Второе поколение ЭВМ (1959 — 1967 гг.)Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:и ряд других ЭВМ. ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20—30 тысяч операций в секунду и оперативную память—соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6, обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый). Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков. Была достигнута уже величина времени доступа 1х10-6 с, хотя большая часть элементов вычислительной машины еще была связана проводами. Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались. Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области. В начало страницы Третье поколение ЭВМ (1968 — 1973 гг.)Элементная база ЭВМ — малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились. В СССР в 70-е годы получают дальнейшее развитие АСУ. Закладываются основы государственной и межгосударственной, охватывающей страны — члены СЭВ (Совет Экономической Взаимопомощи) системы обработки данных. Разрабатываются универсальные ЭВМ третьего поколения ЕС, совместимые как между собой (машины средней и высокой производительности ЕС ЭВМ), так и с зарубежными ЭВМ третьего поколения (IBM-360 и др. — США). В разработке машин ЕС ЭВМ принимают участие специалисты СССР, Народной Республики Болгария (НРБ), Венгерской Народной Республики (ВНР), Польской Народной Республики (ПНР), Чехословацкой Советской Социалистической Республики (ЧССР) и Германской Демократической Республики (ГДР). В то же время в СССР создаются многопроцессорные и квазианалоговые ЭВМ, выпускаются мини-ЭВМ «Мир-31», «Мир-32», «Наири-34». Для управления технологическими процессами создаются ЭВМ сериии АСВТ М-6000 и М-7000 (разработчики В.П.Рязанов и др.). Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, «Электроника -79, -100, -125, -200», «Электроника ДЗ-28», «Электроника НЦ-60» и др.К машинам третьего поколения относились «Днепр-2», ЭВМ Единой Системы (ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1050, ЕС-1060 и несколько их промежуточных модификаций — ЕС-1021 и др.), МИР-2, «Наири-2» и ряд других. Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем. Обычные электрические соединения с помощью проводов при этом встраивались в микросхему. Это позволило получить значение времени доступа до 2х10 -9 с. В этот период на рынке появились удобные для пользователя рабочие станции, которые за счет объединения в сеть значительно упростили возможность получения малого времени доступа, обычно присущего большим машинам. Дальнейший прогресс в развитии вычислительной техники был связан с разработкой полупроводниковой памяти, жидкокристаллических экранов и электронной памяти. В конце этого периода произошел коммерческий прорыв в области микроэлектронной технологии. Возросшая производительность вычислительных машин и только появившиеся многомашинные системы дали принципиальную возможность реализации таких новых задач, которые были достаточно сложны и часто приводили к неразрешимым проблемам при их программной реализации. Начали говорить о «кризисе программного обеспечения». Тогда появились эффективные методы разработки программного обеспечения. Создание новых программных продуктов теперь все чаще основывалось на методах планирования и специальных методах программирования. Этот период связан с бурным развитием вычислительных машин реального времени. Появилась тенденция, в соответствии с которой в задачах управления наряду с большими вычислительными машинами находится место и для использования малых машин. Так, оказалось, что миниЭВМ исключительно хорошо справляется с функциями управления сложными промышленными установками, где большая вычислительная машина часто отказывает. Сложные системы управления разбиваются при этом на подсистемы, в каждой из которых используется своя миниЭВМ. На большую вычислительную машину реального времени возлагаются задачи планирования (наблюдения) в иерархической системе с целью координации управления подсистемами и обработки центральных данных об объекте. Программное обеспечение для малых вычислительных машин вначале было совсем элементарным, однако уже к 1968 г. появились первые коммерческие операционные системы реального времени, специально разработанные для них языки программирования высокого уровня и кросс-системы. Все это обеспечило доступность малых машин для широкого круга приложений. Сегодня едва ли можно найти такую отрасль промышленности, в которой бы эти машины в той или иной форме успешно не применялись. Их функции на производстве очень многообразны; так, можно указать простые системы сбора данных, автоматизированные испытательные стенды, системы управления процессами. Следует подчеркнуть, что управляющая вычислительная машина теперь все чаще вторгается в область коммерческой обработки данных, где применяется для решения коммерческих задач. МиниЭВМ начали применяться и для решения инженерных задач, связанных с проектированием. Проведены первые эксперименты, показавшие эффективность использования вычислительных машин в качестве средств проектирования. Применение распределенных вычислительных систем явилось базой для децентрализации решения задач, связанных с обработкой данных на заводах, в банках и других учреждениях. Вместе с тем для данного периода характерным является хронический дефицит кадров, подготовленных в области электронных вычислительных машин. Это особенно касается задач, связанных с проектированием распределенных вычислительных систем и систем реального времени. В начало страницы Четвертое поколение ЭВМ (1974 — 1982 гг.)Элементная база ЭВМ — большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора)—набора программ, которые организуют непрерывную работу машины без вмешательства человека. К этому поколению можно отнести ЭВМ ЕС: ЕС-1015, -1025, -1035, -1045, -1055, -1065 (“Ряд 2”), -1036, -1046, -1066, СМ-1420, -1600, -1700, все персональные ЭВМ (“Электроника МС 0501”, “Электроника-85”, “Искра-226”, ЕС-1840, -1841, -1842 и др.), а также другие типы и модификации. К ЭВМ четвертого поколения относится также многопроцессорный вычислительный комплекс «Эльбрус». «Эльбрус-1КБ» имел быстродействие до 5,5 млн. операций с плавающей точкой в секунду, а объем оперативной памяти до 64 Мб. У «Эльбрус-2» производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мслов ( слово 72 разряда), максимальная пропускная способность каналов ввода-вывода — 120 Мб/с.В начало страницы |
pchistory.narod.ru
таблица, характеристики и история. Что понимают под термином «поколение ЭВМ»?
Появлению современных компьютеров, которыми мы привыкли пользоваться, предшествовала целая эволюция в развитии вычислительной техники. Согласно распространенной теории, развитие индустрии ЭВМ шло на протяжении нескольких отдельных поколений.
Современные эксперты склонны считать, что их шесть. Пять из них уже состоялись, еще одно — на подходе. Что именно под термином «поколение ЭВМ» понимают IT-специалисты? Каковы принципиальные различия между отдельными периодами развития вычислительной техники?
Предыстория появления ЭВМ
История развития ЭВМ 5 поколений интересна и увлекательна. Но прежде чем изучить ее, полезно будет узнать факты, касающиеся того, какие технологические решения предшествовали разработке ЭВМ.
Люди всегда стремились к совершенствованию процедур, связанных с подсчетами, вычислениями. Историками установлено, что инструменты для работы с цифрами, имеющие механическую природу, были изобретены еще в Древнем Египте и других государствах античности. В средние века европейские изобретатели могли конструировать механизмы, с помощью которых, в частности, могла вычисляться периодичность лунных приливов.
Прообразом современных ЭВМ некоторые эксперты считают изобретенную в начале 19 века машину Бэббиджа, обладавшую функциями программирования вычислений. В конце 19-начале 20 века появились устройства, в которых стала использоваться электроника. В основном они задействовались в индустрии телефонной и радиосвязи.
В 1915 году переехавший в США немецкий эмигрант Герман Холлерит основал компанию IBM, впоследствии ставшую одним из самых узнаваемых брендов IT-индустрии. В числе самых сенсационных изобретений Германа Холлерита стали перфокарты, в течение десятилетий выполнявшие функцию основного носителя информации при пользовании вычислительной техникой. К концу 30-х годов появились технологии, позволившие говорить о начале компьютерной эпохи в развитии человеческой цивилизации. Появились первые ЭВМ, который впоследствии стали классифицироваться как принадлежащие к «первому поколению».
Признаки ЭВМ
Ключевым принципиальным критерием отнесения вычислительного устройства к категории ЭВМ, или компьютера, эксперты называют программируемость. Этим соответствующего типа машины, в частности, отличаются от калькуляторов, какими бы мощными последние ни являлись. Даже если речь идет о программировании на очень низком уровне, когда используются «нули и единицы» — критерий в силе. Соответственно, как только были изобретены машины, быть может, по внешним признакам сильно схожие с калькуляторами, но которые можно было программировать — их стали именовать компьютерами.
Под термином «поколение ЭВМ» понимают, как правило, принадлежность компьютера к конкретной технологической формации. То есть, той базе аппаратных решений, на основе которой ЭВМ работает. При этом, исходя из критериев, предлагаемых IT-экспертами, деление компьютеров на поколения далеко не условное (хотя, конечно, есть и переходные формы компьютеров, которые сложно однозначно отнести к какой-либо конкретной категории).
Завершив теоретический экскурс, мы можем начать изучать поколения ЭВМ. Таблица, что ниже, поможет нам ориентироваться в периодизации каждого.
Поколение | Годы |
1 | 1930 — 1950-е |
2 | 1960 — 1970-е |
3 | 1970 — 1980-е |
4 | Вторая половина 70 — начало 90-х |
5 | 90-е — наше время |
6 | В разработке |
Далее мы рассмотрим технологические особенности компьютеров для каждой категории. Нами будет определена характеристика поколений ЭВМ. Таблица, что мы сейчас составили, будет дополнена другими, в которых будут соотнесены соответствующие категории и технологические параметры.
Отметим важный нюанс — нижеследующие рассуждения касаются, главным образом, эволюции компьютеров, которые сегодня принято относить к персональным. Есть совершенно иные классы ЭВМ — военные, промышленные. Есть так называемые «суперкомпьютеры». Их появление и развитие — отдельная тема.
Первые ЭВМ
В 1938 году германский инженер Конрад Цузе конструирует устройство, названное Z1, а в 42-м выпускает его усовершенствованную версию — Z2. В 1943 году свою вычислительную машину изобретают англичане и называют ее «Колосс». Некоторые эксперты склонны считать английскую и немецкие машины первыми ЭВМ. В 1944-м на базе разведданных из Германии вычислительную машину создают также и американцы. Разработанная в США ЭВМ получила название «Марк I».
В 1946 году американские инженеры делают небольшую революцию в области конструирования вычислительной техники, создав ламповый компьютер ЭНИАК, в 1000 раз более производительный, чем «Марк I». Следующей известной американской разработкой стала созданная в 1951 году ЭВМ, названная УНИАК. Ее основная особенность в том, что она первой из ЭВМ стала использоваться как коммерческий продукт.
К тому моменту, к слову, свой компьютер уже успели изобрести советские инженеры, работающие в Академии наук Украины. Наша разработка получила название МЭСМ. Ее производительность, по оценке экспертов, была самой высокой среди ЭВМ, собранных в Европе.
Технологические особенности первого поколения ЭВМ
Собственно, исходя из каких критерий определяется первое поколение развития ЭВМ? Таковым IT-специалисты считают, прежде всего, компонентную базу в виде вакуумных ламп. Машины первого поколения к тому же обладали рядом характерных внешних признаков — огромный размер, очень большое энергопотребление.
Вычислительная их мощность также была относительно скромна, она составляла несколько тысяч герц. Вместе с тем ЭВМ первого поколения содержали многое, что есть в современных компьютерах. В частности, это машинный код, позволяющий программировать команды, а также запись данных в память (с помощью перфокарт и электростатических трубок).
ЭВМ первого поколения требовали высочайшей квалификации человека, их использующего. Требовалось не только владение профильными навыками (выражающимися в работе с перфокартами, знании машинного кода и т.д.), но, как правило, также и инженерные знания в области электроники.
В ЭВМ первого поколения, как мы уже сказали, уже была оперативная память. Правда, ее объем был исключительно скромным, он выражался в сотнях, в лучшем случае — в тысячах байт. Первые модули ОЗУ для ЭВМ с трудом можно было классифицировать как электронный компонент. Они представляли собой наполненные ртутью емкости в виде трубок. Кристаллы памяти фиксировались на определенных их участках, и тем самым данные сохранялись. Однако достаточно скоро после изобретения первых ЭВМ появилась более совершенная память на базе ферритовых сердечников.
Второе поколение ЭВМ
Какова дальнейшая история развития ЭВМ? Поколения ЭВМ стали развиваться далее. В 60-х годах получают распространение компьютеры, использующие уже не только вакуумные лампы, но также и полупроводники. Значительно повысилась тактовая частота микросхем — обычным делом считался показатель в 100 тыс. герц и выше. Появились первые магнитные диски как альтернатива перфокартам. В 1964 году компания IBM выпустила уникальный продукт — отдельный компьютерный монитор с достаточно приличными характеристиками — 12-дюймовой диагональю, разрешением 1024 на 1024 точек, а также частотой развертки в 40 Гц.
Поколение номер три
Чем примечательно третье поколение ЭВМ? Прежде всего, переводом компьютеров с ламп и полупроводников на интегральные схемы, которые, не считая ЭВМ, стали использоваться во множестве других электронных устройств.
Впервые возможности интегральных схем были показаны миру стараниями инженера Джека Килби и компании Texas Instruments в 1959 году. Джек создал небольшую конструкцию, выполненную на пластинке из металла германия, которая, как предполагалось, заменит собой сложные полупроводниковые конструкции. В свою очередь, компания Texas Instruments создала компьютер, собранный на базе подобных пластинок. Самое примечательное, что он был в 150 раз меньше, чем аналогичной производительности полупроводниковая ЭВМ. Технология интегральных схем получила дальнейшее развитие. Большую роль в этом сыграли исследования Роберта Нойса.
Эти аппаратные компоненты позволили, прежде всего, значительно уменьшить габариты ЭВМ. В результате произошло существенное повышение производительности компьютеров. Третье поколение ЭВМ характеризовалось выпуском ЭВМ с тактовой частотой, выражаемой уже в мегагерцах. Уменьшилось также и энергопотребление компьютеров.
Стали более совершенными технологии записи данных и обработки их в модулях ОЗУ. Что касается оперативной памяти, ферритовые элементы стали более емкими, технологически совершенными. Появились сначала прототипы, а затем и первые версии дискет, используемые как внешний носитель данных. В архитектуре ПК появилась кэш-память.Стандартной средой взаимодействия пользователя и компьютера стало окно дисплея.
Происходило дальнейшее совершенствование программных компонентов. Появились полноценные операционные системы, стало разрабатываться самое разнообразное прикладное ПО, были внедрены концепции многозадачности в работу ЭВМ. В рамках ЭВМ третьего поколения появляются такие программы, как системы управления базами данных, а также ПО для автоматизации проектных работ. Появляется все больше языков программирования и сред, в рамках которых осуществляется создание ПО.
Особенности четвертого поколения
Четвертое поколение ЭВМ характеризуется появлением интегральных схем, относящихся к классу больших, а также так называемых сверхбольших. В архитектуре ПК появилась ведущая микросхема — процессор. ЭВМ по своей конфигурации стали ближе к рядовым гражданам. Пользование ими стало возможным при минимальной квалификационной подготовке, в то время как работа с ЭВМ предыдущих поколений требовала профессиональных навыков. Модули ОЗУ стали выпускаться не на основе ферритовых элементов, а на базе CMOS-микросхем. К четвертому поколению ЭВМ принято относить и первый компьютер Apple, собранный в 1976 году Стивом Джобсом и Стефаном Возняком. Многие IT-эксперты считают, что Apple — первый в мире персональный компьютер.
Четвертое поколение ЭВМ также совпало с началом популяризации Интернета. В этот же период появился самый известный сегодня бренд софт-индустрии — Microsoft. Возникли первые версии операционных систем, которые мы знаем сегодня — Windows, MacOS. Компьютеры стали активно распространяться по всему миру.
Пятое поколение
Период расцвета четвертого поколения компьютеров — середина-конец 80-х годов. Но уже в начале 90-х на рынке IT-технологий начали происходить процессы, позволившие начать отсчет новому поколению ЭВМ. Речь идет о значительных шагах вперед, прежде всего, в инженерно-технических наработках, связанных с процессорами. Появились микросхемы с архитектурой, относимой к типу параллельно-векторной.
Пятое поколение ЭВМ — это невероятные темпы роста производительности машин из года в год. Если в начале 90-х тактовая частота микропроцессоров в несколько десятков мегагерц считалась хорошим показателем, то к началу 2000-х никто не удивлялся гигагерцам. Компьютеры, которыми мы пользуемся сейчас, как полагают IT-эксперты, — это также пятое поколение ЭВМ. То есть, технологический задел начала 90-х актуален до сих пор.
ПК, относящиеся к пятому поколению, стали не просто вычислительными машинами, а полноценными мультимедийными инструментами. На них стало возможно монтировать фильмы, работать с изображениями, записывать и обрабатывать звук, создавать инженерные проекты, запускать реалистичные 3D-игры.
Характеристики шестого поколения
В обозримом будущем, считают аналитики, мы вправе ожидать, что появится 6 поколение ЭВМ. Оно будет характеризоваться использованием нейронных элементов в архитектуре микросхем, использованием процессоров в рамках распределенной сети.
Производительность компьютеров в следующем поколении будет измеряться, вероятно, уже не в гигагерцах, а в принципиально иного типа единицах исчисления.
Сравнение характеристик
Мы изучили поколения ЭВМ. Таблица ниже позволит нам ориентироваться в соотнесении компьютеров, принадлежащих к той или иной категории, и технологической базы, на которой основано их функционирование. Зависимости следующие:
Поколение | Технологическая база |
1 | Вакуумные лампы |
2 | Полупроводники |
3 | Интегральные схемы |
4 | Большие и сверхбольшие схемы |
5 | Параллельно-векторные технологии |
6 | Нейронные принципы |
Полезной может оказаться также визуализация соотнесения производительности и конкретного поколения ЭВМ. Таблица, которую мы сейчас составим, отразит и эту закономерность. Берем за основу такой параметр как тактовая частота.
Поколение | Тактовая частота выполнения операций |
1 | Несколько килогерц |
2 | Сотни КГц |
3 | Мегагерцы |
4 | Десятки МГц |
5 | Сотни МГц, Гигагерцы |
6 | Критерии измерения прорабатываются |
Таким образом, мы визуализировали ключевые технологические особенности для каждого поколения ЭВМ. Таблица, любая из представленных нами, поможет нам соотносить соответствующие параметры и конкретную категорию компьютеров применительно к тому или иному этапу развития вычислительной техники.
fb.ru