Производство электроэнергии по типам электростанций в мире – 29. Энергетика мира. Структура производства электроэнергии по странам.

Содержание

Страны-лидеры по производству электроэнергии | VivaReit

Производство электроэнергии человеком началось в конце 1870-х гг., когда баварский инженер З. Шуккерт построил в городе Этталь первую электростанцию. Местом ее расположения стал дворовой сад Линдерхофа. Там находился грот, который необходимо было осветить. Свеч для этого было недостаточно, и Шуккерт решился на эксперимент. Его электростанция состояла из 24 динамоэлектрических генераторов, соединенные между собой приводом от парового двигателя.

Сейчас в мире электроэнергия производится разными путями – тепловыми двигателями, гидродинамикой, силой ветра и солнца, приливами и отливами, расщеплением атома. Генерируется электричество на ТЕС, ГЭС, АЭС, которые помогают получить электроэнергию традиционными способами.

Но, все чаще, распространение получают и альтернативные методы по производству энергии. В частности, уже много лет практикуется установка в полях ветряков, солнечных батарей на крышах зданий, сжигание мусора и других отходов жизнедеятельности человека на заводах.

Лидерами по производству электрической энергии являются Китай (на первом месте), США (на втором) и Индия (на третьем).

10. Южная Корея, 517 млрд кВт/час в год

В этой стране сосредоточено огромное количество тепловых станций, на которые приходится более половины производства электричества. Появление ТЭС было вызвано тем, что правительство Южной Кореи недостаточно использует возможности рек. В результате чего, гидроэнергетика плохо развивается и не оказывает серьезного влияния на энергетический сектор.

Быстро восполнить потребности в энергии, в которой нуждались промышленные предприятия, жители страны, армия, производство, помогло строительство атомных электрических станций. Сейчас правительство стремится развивать возобновляемые источники электроэнергии, чтобы снизить загрязнение атмосферы и уровень применения АЭС.

9. Бразилия, 582 млрд кВт/час в год

Энергетический сектор государства формируется из самых различных видов источников и ресурсов. Это и ветровая энергия, и применение природного газа, угля, масла, биотоплива, и атомная энергетика, и водоемы.

В основном, электричество производится с помощью ГЭС (более 80%). Проблемы начинаются в период засухи, которая может длиться несколько месяцев подряд. В такие моменты правительство выдает распоряжение использовать другие ресурсы получения электроэнергии. В частности, запускаются на полную мощность АЭС, ТЭС, где в качестве топлива используют уголь, биотопливо, мусор.

Гидросистема Бразилии очень развитая, поэтому руководство страны старается максимально использовать ее возможности, создавая новые ГЭС. Бразилия экспортирует часть получаемой энергии в соседние южноамериканские государства.

8. Франция, 555 млрд кВт/час в год

Долгое время данное европейское государство было лидером по производству и экспорту электроэнергии на всем Европейском континенте. Но последние лет пять уступает свои позиции Германии.

Ежегодно Франция производит больше 550 миллиардов киловатт-часов чистого «продукта». На территории страны сосредоточено огромное количество АЭС, с помощью которых изготавливается 75% всей электроэнергии Франции.

«Атомный» прорыв начался после Второй мировой войны, обеспечив производство и население дешевым электричеством.

7. Германия, 614 млрд кВт/час в год

Отличительной особенностью самого крупного государства в ЕС является наличие, как традиционных источников производства энергии, так и альтернативных. В частности, в Германии очень много ветряков, позволяющих получать ветровую энергию. Есть и станции, работающие на солнечных батареях. Также правительство огромные суммы бюджета вкладывают в то, чтобы развивать так называемые неводные и возобновляемые источники энергии.

Станции страны работают на ветре и биотопливе, что позволяет получать экологически чистую электроэнергию. Это помогает уменьшить выбросы в атмосферу, делает более безопасным производство энергии в стране, снижает риск аварий на атомных станциях.

6. Канада, 615 млрд кВт/час в год

Основными источниками получения электроэнергетики считаются АЭС, ГЭС и ТЕС. Большое внимание уделяется тому, чтобы развивать возобновляемые ресурсы электроэнергии. Поэтому правительство старается максимально использовать особенности географического расположения Канады, ее климата, специфику водного и ветрового режима.

В частности, в регионах, где постоянно дуют ветра, устанавливаются ветряки и ветровые станции. На горных реках и более крупных водных артериях строятся ГЭС. Дополнительно используются природные ископаемые – уголь, древесный газ, древесина, кокс, нефть и нефтепродукты.

5. Япония, 1061 млрд кВт/час в год

Такое огромное количество чистой электроэнергии уже давно сделало Японию энергетически независимой от других стран мира и Тихоокеанского региона. Правительство страны полностью обеспечивает производственные мощности, поддерживает работу инфраструктурных объектов, жилые дома, транспорт и т.д. Часть японских энергетических ресурсов экспортируется за границу, в том числе, в страны Азии. В другие государства

Япония также отправляет оборудование, которое очень необходимо для энергетического сектора. Его большую часть составляют АЭС и ядерная энергетика. Но после аварии на Фукусима-1 в 2011 году и масштабных загрязнений природы, практически все атомные станции были закрыты. Поэтому акцент в получении энергии был перемещен на развитие системы гидроэнергетики, а также использование возобновляемых источников энергии.

4. Россия, 1064 млрд кВт/час в год

На территории Российской Федерации находится много разных станций, производящих энергию. Более 60% – это тепловые станции, которые работают с помощью угля и природного газа. Еще 40% приходится на альтернативные ресурсы, а также ГЭС (чему способствует развитая водная система) и АЭС. Получают электроэнергию в России и с помощью ветровых, солнечных станций. Экспортируются энергоресурсы в Польшу, Турцию, Финляндию.

3. Индия, 1200 млрд  кВт/час в год

Государство замыкает тройку лидеров стран-производителей энергии в мире. 50% электричества поступают от ТЭС, которые работают от угля. Гораздо меньше ресурсов поступает от гидростанций и других источников.

Производящие мощности постоянно увеличиваются, что позволило Индии занять первое место в Азии по количеству энергетических ресурсов. Данный сектор экономики постоянно стимулируется спросом и потребностями фирм, компаний, заводов, самих индусов.

2. США, 4300 млрд. кВт/час в год

На благосостояние этой страны работают разные виды станций, способных производить электроэнергию. Благодаря климатическим условиям, разветвленной гидросистеме, близости океана, разной розе ветров, богатым природным ископаемым, по всей территории Соединенных Штатов были установлено огромное количество ГЭС, ТЭС, АЭС.

К основным источникам, которые занимаются производством энергии, относятся тепловая, ядерная, геотермальная, ветровая, атомная и гидроэнергетика. Правительством разрабатываются специальные программы развития альтернативных энергетических ресурсов, чтобы развивать энергокомплекс США. Возобновляемые источники включают использование биотоплива, солнечной энергетики, сжигание мусора, установку на домах и фирмах солнечных батарей.

1. Китай, 5600 млрд. кВт/час в год

КНР богата природными запасами угля, что позволяет наладить бесперебойную работу тепловых станций. Значительную помощь в их работе оказывают гидроэнергетические ресурсы, строительство и запуск АЭС.

Чтобы правильно распределять полученный продукт и ресурсы, в 1996 году был принят специальный закон об электроэнергии. Его суть состоит в том, чтобы регулировать производство энергии, защищать инвесторов, которые вкладывают средства в развитие энергокомплекса.




























vivareit.ru

Тенденции развития мировой электроэнергетики (Ч. 1)

Научно-технический прогресс и появление новых секторов и отраслей экономики, совершенствование технологий, повышение качества и улучшение условий жизни людей ведут к расширению сфер использования электроэнергии и повышению требований к надежному и бесперебойному энергоснабжению.

Особенности электроэнергетики как отрасли обусловлены спецификой ее основного продукта. Электроэнергия по своим свойствам подобна услуге: время ее производства совпадает со временем потребления.

Электроэнергетика должна быть готова к выработке, передаче и поставке электроэнергии в момент появления спроса, в том числе в пиковом объеме, располагая для этого необходимыми резервными мощностями и запасом топлива.

Чем больше максимальное (хотя бы и кратковременное) значение спроса, тем больше должны быть мощности, чтобы обеспечить готовность к оказанию услуги. (Ситуация изменится, если появятся эффективные технологии хранения электроэнергии. Пока это в основном аккумуляторы разных типов, а также гидроаккумулирующие станции.)

Невозможность хранения электроэнергии в промышленных масштабах предопределяет технологическое единство всего процесса ее производства, передачи и потребления. Вероятно, это единственная отрасль в современной экономике, где непрерывность производства продукции должна сопровождаться таким же непрерывным ее потреблением. В силу этой особенности в электроэнергетике существуют жесткие технические требования к каждому этапу технологического цикла, в том числе по частоте электрического тока и напряжению.

Принципиальной особенностью электрической энергии как продукта, отличающей ее от всех других видов товаров и услуг, является то, что ее потребитель может повлиять на устойчивость работы производителя.
Потребности экономики и общества в электрической энергии существенно зависят от погодных факторов, времени суток, технологических режимов различных производственных процессов в отраслях-потребителях, особенностей домашних хозяйств, даже от программы телепередач.

Различия между максимальным и минимальным уровнями потребления определяет потребность в так называемых резервных мощностях, которые включаются только тогда, когда уровень потребления достигает определенного значения.

Экономические характеристики производства электроэнергии зависят от типа электростанции, степени ее загрузки и режима работы, вида топлива. При прочих равных условиях в наибольшей степени востребуется электроэнергия тех станций, которые генерируют ее в нужное время и в нужном объеме с наименьшими издержками.

С учетом всех этих особенностей принято объединять устройства, производящие энергию (генераторы), в единую энергетическую систему, что обеспечивает сокращение суммарных издержек производства и уменьшает потребность в резервировании производственных мощностей. Система нуждается в операторе, который выполняет координирующие функции. Он регулирует график и объем как производства, так и потребления электроэнергии.

Системный оператор принимает решения на основании рыночных сигналов от производителей (о возможностях и стоимости производства электроэнергии) и от потребителей (о спросе на нее в определенные временные интервалы). В конечном счете системный оператор должен обеспечить надежную и безопасную работу энергосистемы, эффективное удовлетворение спроса на электроэнергию. Его деятельность отражается на производственных и финансовых результатах всех участников рынка электроэнергии, а также на их инвестиционных решениях.

Основными производителями электроэнергии являются:
тепловые электростанции (ТЭС), где тепловая энергия, образующаяся при сжигании органического топлива (уголь, газ, мазут, торф, сланцы и т.д.), используется для вращения турбин, приводящих в движение электрогенератор.

Возможность одновременного производства тепла и электроэнергии привела к распространению в ряде стран централизованного теплоснабжения на ТЭЦ;

гидроэлектростанции (ГЭС), где в электроэнергию преобразуется механическая энергия потока воды с помощью гидравлических турбин, вращающих электрогенераторы;

атомные электростанции (АЭС), где в электроэнергию преобразуется тепловая энергия, полученная при цепной ядерной реакции радиоактивных элементов в реакторе.

Три основных типа электростанций определяют виды используемых энергоресурсов. Их принято подразделять на первичные и вторичные, возобновляемые и невозобновляемые.

Первичные энергоносители – это сырьевые материалы в их естественной форме до проведения какой-либо технологической обработки, например каменный уголь, нефть, природный газ и урановая руда. В разговорной речи эти материалы называют просто первичной энергией. К таковой относятся также солнечное излучение, ветер, водные ресурсы.

Вторичная энергия – это продукт переработки, «облагораживания» первичной, например бензин, мазут, ядерное топливо.

Некоторые виды ресурсов могут относительно быстро восстанавливаться в природе, они называются возобновляемыми: дрова, камыш, торф и прочие виды биотоплива, гидропотенциал рек. Ресурсы, не обладающие таким качеством, называются невозобновляемыми: уголь, сырая нефть, природный газ, нефтеносный сланец, урановая руда. По большей части они являются полезными ископаемыми. Энергия солнца, ветра, морских приливов относится к неисчерпаемым возобновляемым энергетическим ресурсам.

В настоящее время наиболее распространенным видом технологического топлива в мировой электроэнергетике выступает уголь. Это объясняется относительной дешевизной и широкой распространенностью запасов данного вида топлива.

Однако транспортировка угля на значительные расстояния ведет к большим издержкам, что во многих случаях делает его использование нерентабельным. При производстве энергии с использованием угля высок уровень выброса в атмосферу загрязняющих веществ, что наносит существенный вред окружающей среде. В последние десятилетия ХХ в. появились технологии, позволяющие использовать уголь для производства электроэнергии с большей эффективностью и меньшим ущербом для окружающей среды.

Расширение использования газа в мировой электроэнергетике за последние годы объясняется существенным ростом его добычи, появлением высокоэффективных технологий производства электроэнергии, основанных на применении данного вида топлива, а также ужесточением политики по охране окружающей среды.

Все большее распространение получает использование урана. Это топливо обладает колоссальной эффективностью по сравнению с прочими сырьевыми источниками энергии. Однако применение радиоактивных веществ сопряжено с риском масштабного загрязнения окружающей среды в случае аварии. Кроме того, возведение АЭС и утилизация отработанного топлива чрезвычайно капиталоемки. Развитие этого вида энергетики осложняется и тем, что пока немногие страны могут обеспечить подготовку научных и технических специалистов, способных разработать технологии и обеспечить квалифицированную эксплуатацию АЭС.

Большое значение в структуре источников электроэнергии сохраняют гидроресурсы, хотя их доля за последние десятилетия несколько сократилась. Преимущества этого источника в его возобновляемости и относительной дешевизне.

Но возведение гидростанций оказывает необратимое воздействие на окружающую среду, так как обычно требует затопления значительных территорий при создании водохранилищ. Кроме того, неравномерность распределения водных ресурсов на планете и зависимость от климатических условий ограничивают их гидроэнергетический потенциал.

Существенное сокращение использования нефти и нефтепродуктов для производства электроэнергии за последние тридцать лет объясняются как ростом стоимости данного вида топлива, высокой эффективностью его применения в других отраслях, так и дороговизной его транспортировки на значительные расстояния, а также возросшими требованиями к экологической безопасности.

Растет внимание к возобновляемым источникам энергии. В частности, активно разрабатываются технологии использования энергии солнца и ветра, потенциал которых огромен. Правда, на сегодняшний день использование солнечной энергии в промышленных масштабах в большинстве случаев оказывается менее эффективным по сравнению с традиционными видами ресурсов.

Что касается энергии ветра, в развитых странах (прежде всего под влиянием экологических движений) ее применение в электроэнергетике значительно увеличилось. Нельзя не упомянуть также геотермальную энергию, которая может иметь серьезное значение для некоторых государств или отдельных регионов (Исландии, Новой Зеландии, в России – для Камчатки, Ставропольского и Краснодарского краев, Калининградской области). Развитие производства электроэнергии на основе возобновляемых ресурсов пока еще требует государственных дотаций.

В конце XX – начале XXI в. резко повысился интерес к биоэнергетическим ресурсам. В отдельных странах (например, в Бразилии) производство электроэнергии на биотопливе составило заметную долю в энергетическом балансе. В США была принята специальная программа субсидирования биотоплива. Но существуют и сомнения в перспективах данного направления электроэнергетики. Они касаются прежде всего эффективности использования таких природных ресурсов, как земля и вода; так, отвод обширных площадей пахотной земли под производство биотоплива внес свой вклад в удвоение цен на продовольственное зерно.

Представление об изменениях в структуре генерации электроэнергии за последние десятилетия дает рис. 2.

Рис. 2. Изменения в структуре генерации по видам топлива, %
1973 г.

2011 г.

* Включая возобновляемые геотермальную, солнечную, ветровую, приливную энергии, биотопливо и отходы и т.п.
Источник: International Energy Agency. 2013 Key World Energy Statistics. Paris 2013.

В настоящее время, как и в 1973 г., подавляющая часть выработки электроэнергии приходится на органические виды топлива. Однако их доля уменьшилась с 75% до 68%. При этом заметно возрос удельный вес атомной энергетики – с 3% до 13%, прочих возобновляемых ресурсов – с 1% до 4%. Роль гидроэнергетики снизилась.

Наиболее драматические сдвиги произошли внутри органических видов топлива. Резко упала доля нефти – с 25% до 5%. При этом выросли показатели природного газа – с 12% до 22% – и такого традиционного вида топлива, как уголь – с 38% до 41%. Последний продолжает оставаться главным ресурсом для выработки электроэнергии в мире.

Структура глобального рынка
За последнее десятилетие производств

ss69100.livejournal.com

Топ-10 мировых производителей электроэнергии по странам

Подробности

Подробности


Опубликовано 01.03.2016 12:39


Просмотров: 50685

Первая в мире электростанция был спроектирована и построена в 1878 году Зигмундом Шуккертом, чтобы осветить грот во дворовом саду Линдерхофа в Баварском городке Этталь. На этой электростанции было установлено 24 динамоэлектрических генератора с приводом от парового двигателя.

Первый в истории эксперимент с участием электроэнергии осуществил греческий философ, Фалес Милетский, потерев Янтарь (окаменевшая смола) о мех. Это явление было объяснено как статическое электричество. Слово «электричество», таким образом, происходит от греческого слова Elektron, что в переводе означает Янтарь.

Электричество может генерироваться несколькими способами. Наиболее широко используемым методом является метод электромагнитной индукции. В этом методе, механическая энергия, вырабатываемая тепловыми двигателями, гидроэлектроэнергия, энергия приливов и отливов, или энергия ветра разгоняет и заставляет вращаться электрический генератор, который вырабатывает электричество. Большая часть производства электроэнергии по всему миру вырабатывается именно таким методом.

В следующей таблице приводятся данные годового чистого производства электроэнергии, а также годовой расчет на душу населения чистого производства электроэнергии из десяти стран.












Страна Чистое производство (млрд. КВТ/Ч)

В расчете на душу населения. (КВТ/Ч)

Китай 5 649  5010
США 4 297 13536
Индия               1 208 1 108
Россия  1 064 7188
Япония 1 061 7960
Канада  615 18481
Германия            614 7102
Франция              555  8808
Бразилия            582 2893
Южная Корея 517 9704

*Все цифры приведены за 2015 год.

 

Топ 10 стран по производству электроэнергии

 

Китай

На первом месте находится Китай с производством электроэнергии 5 649 миллиардов киловатт-часов. Он входит в тройку стран, которая имеет обильные запасы угля и гидроэнергетических ресурсов. Сектор электроэнергетики Китая испытал большой прорыв в апреле 1996 года, когда был реализован «Закон электроэнергии». Этот закон обеспечивается оптимальное развитие электроэнергетики путем надлежащего регулирования производства, распределения и потребления электроэнергии. Закон также направлен на защиту законных прав инвесторов, менеджеров и потребителей, касающихся электроэнергетики.

 

США

Производство электроэнергии правительством США было оценена примерно в 4 297 млрд. киловатт-часов, что делает их вторым производителем электроэнергии в мире. Основные источники энергии, используемые для выработки электроэнергии в США включают в себя тепловые источники, гидроэнергетику, энергию ветра, ядерную энергетики, геотермальную энергию и другие возобновляемые источники.

 

Индия

Чистая выработка электроэнергии составляет 1 208 миллиардов киловатт-часов в год по состоянию на 2015, Индия занимает третье место в списке десяти ведущих мировых производителей электроэнергии. Большинство, едва ли не больше, чем 50%, электроснабжения Индии поступает от угольных электростанций. Гидроэнергетика и возобновляемые энергетические ресурсы вносят меньшую долю. Генерирующие мощности Индии многократно возросли в последние два десятилетия. Этот рост позволил Индии, стать одним из наиболее быстро растущих рынков для производства электроэнергии. Быстрый рост экономики, доходы населения и развитие городов дали толчок развитию электроэнергетического сектора в Индии.

 

Россия

Россия является второй по величине страной по запасам угля. Россия произвела 1 064 миллиардов киловатт-часов электроэнергии в 2015 году. Наша страна производит электроэнергию в основном из природного газа и угля. Более 60% электроэнергии вырабатывается на тепловых электростанциях. Другими источниками электроэнергии в России являются: атомные реакторы, гидроэлектростанции, ветровые, и другие возобновляемые ресурсы. Россия пятый по величине генератор гидроэлектроэнергии в мире. Россия, как известно экспортирует электроэнергию в такие страны, как Польша, Латвия, Финляндия, Турция, Литва и до недавнего времени в Украину.

 

Япония

Япония — которая произвела чистой электроэнергии на 1 061 млрд киловатт-часов в 2015 — является не только самодостаточной, когда речь заходит об электроснабжении; но она также является крупным экспортером оборудования, необходимого в энергетическом секторе. Электроэнергетический сектор в Японии в значительной мере полагается на ядерные ресурсы, и ядерную энергию. Однако, сейсмическая активность оказались опасными, и большинство АЭС были вынуждены закрыться. Япония добывает большую часть электричества с помощью гидроэнергии, наряду с другими возобновляемыми источниками энергии, такими как биомасса (дерево, трава, навоз, и т.п.), ветер, солнечная энергия и др.

 

Канада

Канада выступает на шестой позиции в этом списке с производством 615 миллиардов киловатт-часов электроэнергии в 2015 году. Помимо возобновляемых источников и атомной электростанции, гидроэнергетика играет важную роль в производстве электроэнергии в Канаде. Другие источники генерации электрической энергии относятся к энергии ветра, угля и природного газа, древесины, нефтепродуктов и кокса.

 

Германия

Мало того, что Германия самая большая страна в мире для производства электроэнергии за счет использования неводных средств и возобновляемых источников, она также является вторым по величине производителем ветровой электроэнергии. Германия произвела 614 миллиардов киловатт-часов в 2015 году и находится на седьмой позиции среди десяти ведущих мировых производителей электроэнергии. Ископаемые виды топлива, биотопливо, ветровая и солнечная энергетика являются одними из источников, используемых для выработки электроэнергии в Германии.

 

Франция

В 2015 году Франция получила чистую выработку электроэнергии в 555 млрд киловатт-часов, что делает ее восьмой в этом списке. Первичным источником энергии во Франции является ядерная энергетика. Более 75% общего производства электроэнергии приходится на АЭС. Благодаря этому, атомную энергетику во Франции называют «историей успеха», которая предоставляет эффективное, свободное от двуокиси углерода, дешевое, и экологически чистое производство электричества. В 2012 году, Франция была крупнейшим экспортером электроэнергии.

 

Бразилия

Бразилия имеет самый большой рынок электроэнергии в Южной Америке. Она также имеет наибольшую емкость водных ресурсов. Электроэнергетика Бразилии сильно зависит от гидроэнергетики. Она произвела 582 млрд киловатт-часов чистой электроэнергии в 2015 году. Более чем 80% потребности в электрической энергии осуществляет гидроэнергетика. Эта крайняя зависимость от гидроэлектроэнергии делает Бразилию уязвимой для дефицита электроэнергии в периоды засухи. Другие источники электроэнергии включают атомную энергетику, биотопливо, природный газ, уголь, масла, и энергию ветра.

 

Южная Корея

На десятой позиции в этом списке производителей электроэнергии, находится Южная Корея с чистой выработкой электроэнергии в 517 миллиардов киловатт-часов в 2015 году. Более чем две трети всего производства электроэнергии приходится на тепловые электростанции. Недостатки в использовании гидроэнергетики и других возобновляемых источников для производства электроэнергии были удовлетворены путем сосредоточения и развития атомной энергетики.

 

Различные способы производства электроэнергии

Основные методы, используемые, чтобы генерировать электрическую энергию из других видов энергии являются:

  • Электромагнитная индукция
    На основе закона Фарадея, это наиболее используемая форма производства электроэнергии, где кинетическая энергия преобразуется в электричество.
  • Статическое электричество
    <В этом методе, электричество генерируется путем физического разделения и переноса заряда. Примером может служить молния.
  • Электрохимия
    Как следует из названия, этот метод, вырабатывает электроэнергию путем прямого преобразования химической энергии в электрическую. Примером может служить батарея.
  • Фотоэлектрический эффект
    В этом методе электричество генерируется путем преобразования света в электрическую энергию. Примером могут служить солнечные батареи.
  • Термоэлектрический эффект
    Разница температур напрямую преобразуется в электричество посредством термоэлектрического эффекта. Примером может служить термоэлемент.
  • Пьезоэлектрический эффект
    В этом методе, электроэнергия вырабатывается из механической деформации в электрически анизотропные молекулы.
  • Ядерное Превращение
    Генерация и ускорение заряженных частиц, таких как излучение альфа-частиц, генерирует электричество в этом методе.

 

Сегодня не только сложно, но даже невозможно вообразить жизнь без электричества. Однако, верно и то, что более 80% загрязнения воздуха вызвано из-за производства электроэнергии. Хотя немыслимо, функционировать без электричества, главное не переусердствовать, и взять производство электроэнергии под разумный контроль, пока это еще возможно, а для этого понадобится оборудование для ЛЭП которые вы можете выбрать обратившись в компанию «Норма-кабель».

Читайте также

Добавить комментарий

electrowelder.ru

крупнейшие электростанции мира по фактической выработке в 2016 году

Показателем для составления большинства рейтингов, как правило, является так называемая номинальная установленная мощность – максимальная мощность, которую способна выдать электростанция в идеальных условиях. Однако этот показатель не слишком коррелируется с реальностью, так как фактическая выработка не находится в прямой зависимости от установленной мощности. Разницу между двумя величинами называют коэффициентом использования мощности (capacity factor). Высчитывается этот коэффициент путём деления реального объёма электроэнергии в киловатт-часах, произведённого электростанцией за год, на максимальный объём электричества, который могла бы выработать станция, если бы работала круглый год 24 часа в сутки. Так что для определения объёма выработки объективнее использовать показатель выработки, который измеряется в кВт•ч. 

Ни одна электростанция в мире не работает без перерывов. Водохранилища ГЭС иногда спускают, ветер дует не всё время, а солнце порой прячется за облаками. Перерывы в работе электростанций могут быть вызваны перезагрузкой, ремонтными работами или авариями.

Управление энергетической информации США (The U.S. Energy Information Administration) установило, что усреднённый коэффициент использования мощности промышленных/коммерческих (utility-scale) солнечных электростанций страны в прошлом году составил 27%, ветровых – 35%, ГЭС – 38%, угольных – 55%, газовых – 56%, атомных – 92%.

ГЭС «Три ущелья» произвела за прошлый год 93 млрд кВт•ч вместо максимально возможных 193 млрд, так что её коэффициент использования мощности составил 48%. Однако бразильская гидроэлектростанция «Итайпу», обладающая существенно меньшей номинальной установленной мощностью (14 ГВт), выдала 103 млрд кВт•ч при коэффициенте использования 84%. Это достижение и сделало её крупнейшей электростанцией мира. «Трём ущельям» приходится довольствоваться лишь вторым местом в этом списке. Стоит отметить, что почти все места рейтинга занимают ГЭС и АЭС, за исключением лишь одной электростанции на природном газе – Сургутской ГРЭС-2, работающей в России на природном газе.

Крупнейшая солнечная электростанция (СЭС) в мире – индийская «Курнул Ультра Мега Солар парк» – обладает мощностью 950 МВт и занимает площадь 24 км². Она вырабатывает чуть больше 2 млрд кВт•ч в год. Впрочем, быстрее всех в мире растёт мощность китайских ветряных электростанций (ВЭС). Только за последние три года в Китае было установлено ВЭС совокупной мощностью, сравнимой с тремя ГЭС «Три ущелья». По общей установленной мощности всех ВЭС и СЭС Китай опережает все остальные страны, вместе взятые.

Неудивительно, что крупнейшая в мире ВЭС – «Ганьсу» мощностью 7965 МВт – также расположена в Китае. Она производит 24 млрд кВт•ч ежегодно и занимает площадь 50 км². К 2020 году её мощность планируют довести до 20 ГВт, так что, возможно, «Ганьсу» станет первой электростанцией на основе ВИЭ, вошедшей в топ-10 крупнейших в мире производителей электричества.

Однако недостаточная пропускная способность сетей (transmission bottlenecks), а также по-прежнему «сильный уголь» и правила, принятые на рынке, пока не позволяют китайской «зелёной» электроэнергии попадать в сеть в должных объёмах. В прошлом году 17% выработанного с помощью ВИЭ электричества не дошли до потребителя.

Это общемировая проблема – производительность ВИЭ растёт быстрее, чем сопутствующая инфраструктура. Поэтому в ближайшие десять лет Китай, скорее всего, продолжит строить огромные ГЭС и утроит мощность своих АЭС. Наряду с развитием альтернативной энергетики это единственный путь эффективно и быстро снизить углеродный след страны.

КНР уже начала строительство своей второй крупнейшей ГЭС – «Байхетань» мощностью в 16 ГВт и производительностью 60 млрд кВт•ч в год. Электростанцию, расположенную в верховьях Янцзы, планируют ввести в строй в 2022 году. Между тем на Янцзы уже есть три крупные ГЭС общей мощностью 30 ГВт. А совокупная мощность всех объектов гидроэнергетики, расположенных на реке, составляет 85 ГВт. По этому показателю Янцзы является крупнейшим производителем электроэнергии природного происхождения. Когда «Байхетань» введут в строй, эта река будет давать почти 500 млрд кВт•ч в год. Лишь восемь стран в мире производят больше энергии, чем одна Янцзы.

Масштабные проекты в сфере гидроэнергетики – ключевой фактор для Китая в его стремлении снизить объём выбросов парниковых газов. Пока доля угля в энергобалансе страны составляет 60%. Повышение доли ГЭС с нынешних 20% стоит отдельным пунктом в 13-м пятилетнем плане, утверждённом правительством страны.

Крупнейшей электростанцией в США считается ГЭС «Гранд Коули» установленной мощностью 6809 МВт. Теоретически она может производить около 60 млрд кВт•ч в год. Однако в реальности в 2014 году электростанция произвела чуть более 20 млрд кВт•ч при коэффициенте использования мощности 34%. Для сравнения: установленная мощность АЭС «Пало Верде», расположенной в Аризоне, составляет лишь 3747 МВт. Но её коэффициент использования мощности не в пример выше – 98%. В том же 2014 году эта станция произвела 32 млрд кВт•ч – больше, чем любая другая электростанция Америки. Вообще, по этому коэффициенту атомная энергетика превосходит все другие типы генерации. У любой АЭС он, как правило, больше 90%. Вот почему семь из десяти крупнейших электростанций США – атомные.

Сейчас более 1,2 млрд человек на земле вообще не имеет доступа к электричеству, 2 млрд человек по-прежнему жгут дрова и навоз, которые являются для них основными источниками энергии. Во многих городах и посёлках на планете электричество появляется лишь на несколько часов в день. Профессор Джейсон Доуни из Университета Калгари подчёркивает, что потребление электричества растёт быстрее, чем человеческая популяция и общее потребление энергии.

«Электричество – самая удобная форма энергии из всех, когда-либо изобретённых человечеством. С его помощью мы можем готовить, поддерживать нужную температуру в домах, развлекаться и оставаться на связи друг с другом, – говорит Доуни. – И если мы намерены дать каждому на земле достойное качество жизни, невозможное без доступа к электроэнергии, мы должны обустроить глобальную инфраструктуру так, чтобы производить нужный объём электричества и не загрязнять при этом планету».

Источник: www.forbes.com

18 Августа 2017 в 14:37

peretok.ru

Сравнительная характеристика различных способов производства электроэнергии (часть первая)

«Необходим объективный подход к ядерной энергетике. Обе стороны должны осознать неотъемлемое право на объективную, а не тактическую информацию, выгодную одной из сторон. Каждый должен сознательно идти на риск.

Обычно риск считается приемлемым, если при сравнении серьезности последствий его теоретическая вероятность намного ниже вероятности природных катастроф, которые рассматриваются как неизбежные и никогда не принимаются в расчет в повседневной жизни … Я не знаю другой области человеческой деятельности кроме атомной энергетики, где было бы так много сделано для оценки риска и гарантии безопасности».

          Кардинал Х. Шверк  (Швейцария) .

Введение.

Среди величайших достижений ХХ века наряду с генной и полупроводниковой технологиями открытие атомной энергии и овладение ею занимает особое место.

Человечество получило доступ к громадному и потенциально опасному источнику энергии, который нельзя ни закрыть, ни забыть, его нужно использовать не во вред, а на пользу человечеству.

У атомной энергии две «родовые» функции – военная, разрушительная и энергетическая – созидательная. По мере уничтожения устрашающих ядерных арсеналов, созданных в период холодной войны, атомная энергия будет проникать внутрь цивилизованного общества в виде тепла, электричества, медицинских изотопов, ядерных технологий, нашедших применение в промышленности, космосе, сельском хозяйстве, археологии, судебной медицине и т.д.

В XXI веке истощение энергоресурса уже не будет первым ограничивающим фактором. Главным становится фактор ограничения предела экологической емкости среды обитания.

Прогресс, достигнутый в превращении атомной энергии в безопасное, чистое и действенное средство удовлетворения растущих глобальных энергетических потребностей, не может быть достигнут никакой другой технологией, несмотря на привлекательность энергии ветра, солнца и других, «возобновляемых» источников энергии.

Однако бытующее в обществе представление об атомной энергии по-прежнему окутано мифами и страхами, которые абсолютно не соответствуют фактическому положению дел, и, в основном, опираются исключительно на чувства и эмоции.

В том случае, Когда голосованием предлагается решать вопросы об опасности там, где действуют законы природы  ( по терминологии В.И.Вернадского, когда «общественное мнение» опережает «общественное понимание» ) , как это ни парадоксально , происходит преуменьшение экологической опасности.

Поэтому одной из важнейших задач, стоящих в настоящее время перед учеными, является задача достижения «общественного понимания» экологических проблем, в том числе – атомной энергетике.

Активность экологических движений должна приветствоваться, но она должна быть конструктивной, а не разрушительной.

Хорошо организованный и цивилизованный диалог между специалистами и общественностью, безусловно, полезен.

Цель нашего проекта – анализ информации, необходимой для выработки собственного осознанного отношения к проблемам развития энергетики вообще и атомной энергетики в частности.

Научно-технический прогресс, энергия и человеческое общество. Источники энергии.

Человечество живет в едином, взаимосвязанном мире, и наиболее серьезные энергетические, экологические и социально-экономические проблемы приобрели глобальный масштаб.

Развитие энергетике связано с развитием человеческого общества, научно-техническим прогрессом, который, с одной стороны, ведет к значительному подъему уровня жизни людей, но с другой оказывает воздействие на окружающую человека природную среду. К  числу важнейших глобальных проблем относятся:

  • рост численности населения Земли и обеспечение его продовольствием;
  • обеспечение растущих потребностей мирового хозяйства в энергии и природных ресурсов;
  • охрана природной среды, в том числе и здоровья человека, от разрушительного антропогенного воздействия технического прогресса.

Такие экологические угрозы, как парниковый эффект и необратимые изменения климата, истощение озонового слоя, кислотные дожди (осадки ), сокращение биологического разнообразия, увеличение содержания токсичных веществ в окружающей среде, требуют новой стратегии развития человечества, предусматривающей согласованное функционирование экономики и экосистемы. Разумеется, потребности современного общества должны удовлетворяться с учётом потребности будущих поколений. Потребление энергии является одним из важных факторов развития экономики и уровня жизни людей. За последние 140 лет потребление энергии во всём мире возросло примерно в 20 раз, а  численность населения планеты – в 4 раза (24).

С учётом темпов нынешнего роста численности населения и необходимости улучшения уровня жизни будущих поколений Мировой Энергетический  Конгресс прогнозирует рост глобального потребления энергии на 50-100% к 2020 году и на 140-320% к 2050г. (3,25).

Что же такое энергия вообще? Согласно современным научным представлениям, энергия-это общая количественная мера движения и взаимодействия всех видов материи, которая не возникает из ничего и не исчезает, а только может переходить из одной формы в другую в соответствии с законом сохранения энергии.

Энергия может проявляться в различных формах : кинетическая, потенциальная, химическая, электрическая, тепловая, ядерная.

Для удовлетворения нашей потребности в энергии существуют возобновляемые и невозобновляемые источники.

Солнце, ветер, гидроэнергия, приливы и некоторые другие источники энергии называют возобновляемыми потому, что их использование человеком практически не изменяет их запасы. Уголь, нефть, газ, торф, уран относятся к невозобнавляемым источникам энергии, и при переработке они теряются безвозвратно.

По прогнозам Международного энергетического агентства потребности в первичных энергоносителях в первом десятилетии ХХ1-го века будут удовлетворены в следующих соотношениях : нефть- не более 40%, газ- менее 24%, твёрдые виды топлива (в основном уголь ) – менее 30%, ядерная энергия -7%, гидроэнергетика – 7%, возобновляемые виды энергии – менее 1%. Региональное потребление первичных энергоносителей может иметь отклонения от мировых тенденций .

Основное количество энергии человечество получает и будет получать в ближайшем будущем, расходуя невозобновляемые источники.

Такие природные ресурсы, как: уголь, нефть, газ –практически невосстанавливаемые, не смотря на то, что их запасы на сегодняшний день во всем мире очень велики, но они все равно когда-либо закончатся. Самое главное то, что при работе ТЭС происходит отравление окружающей среды.

Широко бытующее утверждение об экологической «чистоте» возобновляемых источников энергии справедливо, лишь, если иметь в виду только конечную стадию – энергопроизводящую станцию. Из всех этих видов возобновляемых источников энергии только гидроэнергия          в настоящий момент вносит серьёзный вклад во всемирное производство электроэнергии (17% ).

Гидроэнергетика.

В большинстве промышленно развитых стран незадействованным на сегодня остался лишь незначительный по объёму гидроэнергетический потенциал.

Так,в европейской части страны с наиболее напряжённым топливным балансом использование гидроэнергетических ресурсов достигло 50%, а их экономический потенциал практически исчерпан.

Гидроэнергетические сооружения в потенциале несут в себе опасность крупных катастроф. Так, в 1979 году авария на плотине в Морви (Индия) унесла около 15 тысяч жизней. В Европе в 1963 году авария плотины в Вайонт (Италия) привела к гибели 3 тысячи человек.

Неблагоприятное воздействие гидроэнергетики на окружающую среду, в основном, сводится к следующему : затопление с/х угодий и населённых пунктов, нарушение водного баланса, что ведёт к изменению существования флоры и фауны, климатические последствия (изменение теплового баланса, увеличение количества осадков, скорости ветра, облачности и т.д.).

Перегораживание русла реки приводит к заливанию водоёма и эрозии берегов, ухудшению самоочищения проточных вод и уменьшению содержания кислорода, затруднения свободное движение рыб.

С увеличением масштабов гидротехнического сооружения растёт и масштаб воздействия на окружающую среду.

Энергия ветра.

Энергия ветра в больших масштабах оказалась ненадёжной, неэкономичной и, главное, неспособной давать электроэнергию в нужных количествах.

Строительство ветряных установок усложняется необходимостью изготовления лопастей турбины больших размеров. Так, по проекту ФРГ установка мощностью 2-3 МВт должна иметь диаметр ветрового колеса 100м, причём она производит такой шум, что возникает необходимость отключения её в ночное время.

В штате Огайо была построена крупнейшая в мире ветросиловая установка 10МВт. Проработав несколько суток, была продана на слом по цене 10дол. За тонну. В радиусе нескольких километров жить стало невозможно из-за инфразвука, совпадающего с альфа-ритмом головного мозга, что вызывает психические заболевания.

К серьёзным негативным последствиям использование энергии ветра можно отнести помехи для воздушного сообщения и для распространения радио-и телеволн, нарушения путей миграции птиц, климатические изменения вследствие нарушения естественной циркуляции воздушных потоков.

Солнечная энергия.

Солнечная энергия. Техническое использование солнечной энергии осуществляется в нескольких формах: применение низко – и высокотемпературного оборудования, прямое преобразование солнечной энергии в электрическую на фотоэлектрическом оборудовании.

Принципиальными особенностями солнечного излучения являются огромные потенциальные ресурсы (в 4000 раз превышает прогнозируемые энергопотребности человечества в 2020 году ) и низкая интенсивность. Так, среднесуточная интенсивность солнечного излучения для средней полосы европейской части России составляет 150Вт/м , что в 1000раз меньше тепловых потоков в котлах ТЭС.

К сожалению, пока не видно, какими путями эти огромные потенциальные ресурсы можно реализовать в больших количествах. Одним из наиболее важных препятствий является низкая интенсивность солнечного излучения, что проблему необходимости концентрирования солнечной энергии в сотни раз ещё до того, как она превратится в тепло. Практическая реализация концентрации солнечной энергии требует отчуждения огромных земельных площадей. Для размещения солнечной электростанции (СЭС) мощностью 1000МВт (Эл) в средней полосе европейской части необходима площадь при 10%к.п.д. в 67км2. К этому надо добавить ещё и земли, которые потребуются отвести под различные промышленные предприятия, изготавливающие материалы для строительства и эксплуатации СЭС.

Следует подчеркнуть, что материалоёмкость, затраты времени и людских ресурсов в солнечной энергетике в 500 раз больше, чем в традиционной энергетике на органическом топливе и в атомной энергетике.

Действующая в Крыму СЭС мощностью 5 МВт потребила в 1988 году на собственные нужды в 20 раз больше энергии, чем произвела.

Геотермальная энергия

Отрицательными экологическими последствиями использования геотермальной энергии подземных источников горячей воды является возможность пробуждения сейсмической активности в районе электростанции, опасность локального оседания грунтов, эмиссия отравляющих газов (пары ртути, сероводорода, аммиака, двуокиси и окиси углерода, метана ), которые представляют опасность для человека, животных и растений.

Проведенные исследования показали, что возможная роль возобновляемых источников энергии не выходит за пределы вспомогательного энергоресурса, решающего региональные проблемы. Ресурсы таких источников, как гидроэнергетика, энергия ветра, морских волн и приливов, недостаточны. Солнечная энергетика и энергия  геотермальная с теоретически неограниченными ресурсами характеризуются чрезвычайно низкой интенсивностью поступающей энергии.

Кроме того необходимо помнить, что с использованием новых видов энергии возникает и новый тип экологических последствий, которые могут привести к изменению природных условий в глобальных масштабах и которые пока в полной мере трудно представить. Исследования последних лет показали, что на определенные планы с термоядерным синтезом ( проект ИТЭР ) преждевременно рассчитывать.

Тепловые электростанции.

Тепловые электростанции (ТЭС) появились в конце 19-ого века почти одновременно в России, США и Германии, а вскоре и в других странах. Первая центральная электрическая станция  была введена в эксплуатацию в Нью-Йорке в 1882 году для осветительных целей. Первая крупная тепловая электростанция с паровыми турбинами вступила в строй в 1906 году в Москве. Сегодня ни один более или менее крупный город не обходится без собственных электростанций. Тепловая электростанция – сложное и обширное хозяйство, порой она занимает территорию в 70 га, помимо главного корпуса, где размещаются энергоблоки, здесь располагаются различные вспомогательные производственные установки и сооружения, электрические распределительные устройства, лаборатории, мастерские, склады и т.д. Генераторы тепловых электростанций вырабатывают ток напряжением в десятки киловольт. Мощность теплоэлектростанций сегодня достигает сотен МВт. В США существует ТЭС мощностью 1,2-1,5 млн. кВт и более. В нашей стране от них поступает к потребителям наибольшая часть получаемой электроэнергии (69%). Особый вид тепловых электростанций – теплоэлектроцентрали (ТЭЦ). Эти предприятия производят энергию и тепло одновременно, поэтому коэффициент полезного действия используемого топлива у них достигает 70%, а у обычных тепловых электростанций лишь 30-35%. ТЭЦ всегда размещают вблизи потребителей – в крупных городах, так как передавать тепло (пар, горячую воду) без больших потерь можно максимум на 15-20 километров.

Размещение электростанций зависит от двух основных факторов – топливно-энергетических ресурсов и потребителей энергии, поэтому тепловые электростанции размещаются в районах топливных баз при наличии малокалорийного топлива – его не выгодно далеко перевозить. Например, Канско-Ачинский уголь использует Берёзовская ГРЭС-1 (ГРЭС – государственная районная электростанция). На попутном нефтяном газе работают две Сургутские электростанции. Если же электростанции используют высококалорийное топливо, которое выдерживает дальние перевозки (природный газ), они строятся ближе к местам потребления электроэнергии.

Тепловая энергетика оказывает огромное влияние на окружающую среду, загрязняет воду и атмосферный воздух. Самая грязная и экологически опасная – угольная электростанция. При мощности в 1 млрд. Вт она ежегодно выбрасывает в атмосферу 36,5 млрд. куб. метров горячих газов, содержащих пыль, вредные вещества и 100 млн. куб. метров пара. В отходы идут 50 млн. куб. метров сточных вод, в которых содержится 82 тонны серной кислоты, 26 тонн хлоридов, 41 тонна фосфатов и 500 тонн твёрдой извести. Ко всем этим выбросам необходимо добавить углекислый газ – результат сгорания угля. Наконец, остаётся 360 тысяч тонн золы, которую приходится складировать. В целом для работы угольной электростанции ежегодно требуется 1 млн. тонн угля, 150 млн. кубических метров воды и 30 млрд. кубических метров воздуха. Если учесть, что такие электростанции работают десятилетиями, то их воздействие на окружающую среду можно сравнить с вулканической деятельностью. Каждый         крупный город имеет несколько подобных «вулканов». Например, энергией и теплом Москву обеспечивает 15 теплоэлектроцентралей. В течение 20-ого века тепловые электростанции существенно повысили концентрацию ряда газов в атмосфере. Так, концентрация углекислого газа выросла на 25% и продолжает ежегодно увеличиваться на 0,5%, вдвое выросла концентрация метана и увеличивается на 0,9% в год, постоянно растут концентрации оксидов азота и двуокиси серы. Насыщенный парами воздух разъедает здания и сооружения, ранее устойчивые соединения становятся неустойчивыми, нерастворимые вещества переходят в растворимые и т.д. Избыточное поступление питательных веществ в водоёмы ведёт к их ускоренному «старению», заболевают леса, повышается уровень напряжения электромагнитных полей. Всё это чрезвычайно негативно сказывается на здоровье людей, риск преждевременной смерти увеличивается. Кроме того, повышенное содержание углекислого газа и метана в атмосфере является одной из причин возникновения парникового эффекта.

Парниковый эффект.

Есть несколько точек зрения на эту проблему. Согласно недавним решениям ООН для улучшения климата Земли наиболее развитый государства, такие как США, Япония  и страны Европейского союза, обязаны сократить к 2012 году объём выброса тепличных газов на 6% по сравнению с 1990 годом. Однако многие специалисты считают, что и этого недостаточно. Они настаивают  на 60%,  по их мнению, в борьбу должны включиться не только развитые страны, но и все остальные. Но есть и другая точка зрения: В 1997 году почти 1700 американских учёных подписали обращение к президенту страны, где поставили под сомнение сам подход к решению проблемы. Выбрасываемый промышленностью углекислый газ практически не влияет на климат, считают они. Вулканические извержения, другие природные катаклизмы поставляют подобных соединений куда больше. Например, учёные обратили внимание, что из подпочвенных слоёв тундры в последнее время стало выделяться больше углекислого газа и метана, чем прежде, а по оценкам учёных здесь содержится примерно треть всех земных  углесодержащих газов. Было установлено, что с каждого кв. метра тундры вода уносит 5 граммов углесодержащих веществ, примерно половина из них растворяется в реках, озёрах, ручьях, а затем поступает в атмосферу, остальные уходят в Северный Ледовитый океан. Средняя температура поверхности Земли за последний год поднялась на полградуса, но, по словам экспертов, им потребуется несколько лет,

чтобы определить, свидетельствуют ли данные показатели об ускорении глобального потепления. По мнению учёных, парниковых эффект – результат того, что климат Земли постоянно меняется. Возможно, сейчас происходит потепление, так как заканчивается последний ледниковый период, а колебания климата связаны с солнечной активностью, появлением пятен, увеличением излучаемого тепла. Опасности, связанные с повышением концентрации углекислого газа в атмосфере состоят в повышении температуры Земли. Но общепринятые оценки метеорологов показывают, что повышение  содержания углекислого газа в атмосфере приведёт к повышению температуры практически только в высоких широтах, особенно в Северном полушарии, причём в основном это потепление произойдёт зимой. По оценки специалистом Института сельхозметеорологии Роскомгидромета повышение концентрации этого газа в атмосфере в два раза приведёт к удвоению полезной сельскохозяйственной площади России, с 5 до 11 млн. кв. километров. В различных источниках также указываются  возможные повышения уровня Мирового океана в пределах от 0,2 до 1,4м, многие утверждают, что скоро нас ожидает великий потоп. Но почти все ледники Северного полушария растаяли около 9 тысяч лет назад, осталась только Гренландия. Но и она вместе  со льдами Северного Ледовитого океана не повысит при таянии уровень Мирового океана даже на 1мм.

Основные показатели  стран, развивающих теплоэнергетику

Показатель

 

Франция

Швеция

Япония

Германия

Великобритания

США

Россия

На душу населения, т

Диоксид углерода CO2

5.6

6.74

1.5

1.8

1.28

2.56

0.7

Оксид серы, SO2

0,13

0,16

0,04

0,04

0,02

0,06

0,01

Оксид азота, NOx

0,08

0,1

0,02

0,02

0,02

0,03

0,005

Зола

0,42

0,4

0,13

0,12

0,1

0,17

0,06

Шлаки

0,08

0,08

0,02

0,02

0,02

0,03

0,01

Зола, не улавливаемая фильтрами

0,004

0,004

0,001

0,001

0,001

0,001

0,0006

Высвобождённые радионуклиды, Ки

13,7

15,1

3,4

3,9

2,8

5,8

1,75

Из таблицы совершенно очевидно, что все ведущие страны, даже при очень развитой технологии, не могут избавиться от огромных выбросов, отравляющих атмосферу. Оксид серы, диоксид углерода, способствуют развитию сердечнососудистых и онкологических заболеваний, которые по смертности являются ведущими в мире. Обращает на себя внимание тот факт, что при работе ТЭС так же, как и при работе АЭС, образуются радионуклиды, которые на ТЭС никак не улавливаются.

Приливные электростанции.

Уровень воды в течение суток меняет 4 раза, такие колебания особенно заметны в заливах и устьях рек, впадающих в море. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. ПЭС двустороннего действия (турбины работают при движении воды из моря в бассейн и обратно) способны вырабатывать электроэнергию непрерывно в течение 4-5 часов с перерывами в 1-2 часа четыре раза в сутки.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 году во Франции в устье реки Ранс, впадающей в пролив Ла-Манш, где средняя амплитуда приливов составляет 8,4 м. Несмотря на высокую стоимость строительства, которая почти в 2,5 раза превосходит расходы на возведение ГЭС такой же мощности, первый опыт эксплуатации приливной электростанции оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и эффективно используется. В 1968 году на Баренцевом море вступила в строй опытно-промышленная ПЭС проектной мощностью 800 кВт. Место её строительства – Кислая губа представляет собой узкий залив шириной 150 м и длиной 450 м. Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется также использовать огромный энергетический потенциал Охотского моря, где местами, например в Пенжинской губе, высота приливов достигает 12,9 м, а в Гижигинской губе – 12-14 м. В 1985 году была пущена в эксплуатацию ПЭС в заливе Фанди в Канаде мощностью 20 МВт (амплитуда приливов здесь составляет 19,6 м). В Китае построены три приливные электростанции небольшой мощности. В Великобритании разрабатывается проект ПЭС мощностью 1000 МВт в устье реки Северн, где средняя амплитуда приливов составляет 16,3 м.

С точки зрения экологии ПЭС имеют бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения недавно созданной геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие годы в Южной Корее.

Солнечные космические электростанции.

Получать и использовать «чистую» солнечную энергию на поверхности  Земли мешает атмосфера, поэтому появляются проекты размещения  солнечных электростанций в космосе, на околоземной орбите. У таких станций  есть несколько достоинств: невесомость позволяет создать  многокилометровые конструкции, которые необходимы для получения энергии; преобразование одного вида энергии в другой неизбежно сопровождается  выделением тепла, и сброс его в космос позволит предотвратить опасное перегревание земной атмосферы.

К проектированию солнечных космических электростанций (СКЭС) конструкторы приступили ещё в конце 60-ых годов 20-ого века. Было предложено несколько вариантов транспортировки энергии из космоса на Землю, но наиболее рациональным было признано предложение использовать её  на месте выработки, для этого необходимо перенести основных потребителей электроэнергии (металлургия, машиностроение, химическая промышленность) на спутник Земли Луну или астероиды. Любой вариант СКЭС предполагает, что это колоссальное сооружение, причём не одно. Даже самая маленькая СКЭС должна весить десятки тысяч тонн. Современные средства выведения в состоянии доставить на низкую – опорную орбиту необходимое количество блоков, узлов и панелей солнечных батарей.

Строительство солнечных космических электростанций сейчас кажется фантастикой, но в скором времени, возможно, появится  первая СКЭС, которая даст начало новому уровню развития энергетики.

www.atomic-energy.ru

Список стран по производству электроэнергии

Страны-лидеры по производству электроэнергии

3. География типов электростанций

Наиболее распространенными типами электростанций являются: ТЭС, ГЭС и АЭС.

Рис. 1. Структура производства электроэнергии по типам электростанций

В целом выработка электроэнергии на угле характерна для стран Азии, Африки и Центральной Европы. ГЭС лидируют в Латинской Америке. Значительная доля АЭС в развитых странах.

4. Тепловые электростанции

Большую часть электроэнергии (2/3) вырабатывают на ТЭС, они же являются наиболее распространенными типами электростанций. В некоторых странах доля электроэнергии, получаемая на ТЭС, превышает 80% (Польша, ЮАР, Саудовская Аравия, Ливия, Бахрейн, Ирак, Дания). ТЭС работают на угле, нефтепродуктах и газе. ТЭС, работающие на природном газе, считаются более экологически чистыми, нежели те, которые работают на нефтепродуктах и угле.

5. Гидравлические электростанции

К странам, которые вырабатывают большую часть электроэнергии на ГЭС, относят следующие: Норвегия, Швейцария, Хорватия, Вьетнам, Шри-Ланка, ДР Конго, Замбия, Танзания, Камерун, Бразилия, Канада, Панама, Парагвай, Таджикистан. Самая крупная ГЭС построена в Китае на реке Янцзы – «Три ущелья», мощностью более 97 000 МВт. В целом, наиболее крупные ГЭС построены в Китае и Бразилии.

6. Атомные электростанции

Страны, вырабатывающие большую часть электроэнергии на АЭС: Франция, Бельгия, Литва, Словения. Современные электростанции достаточно конкурентоспособны: не выбрасывают парниковых газов в атмосферу (в отличие от ТЭС), вырабатывают достаточно много электроэнергии. Но, ввиду некоторых катастроф, которые происходили на АЭС (в т.ч. на АЭС «Фукусима»), многие страны пересмотрели свое отношение к этому типу станций, вплоть до полного отказа от их использования.

7. Альтернативная электроэнергетика

Альтернативная энергетика– совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования и, как правило, низкого риска причинения вреда окружающей среде и неисчерпаемости.Активно используется энергия волн, геотермальная энергия, ветровая, солнечная и др.

Геотермальную энергию активно используют в Исландии, Франции, Японии, Китае, США, Новой Зеландии.

Рис. 2. ГеоТЭС в Исландии

Ветровые электростанции (ВЭС): США, Германия, Дания, Норвегия, Испания.

Солнечные электростанции (СЭС): США, Япония, Израиль, Кипр, Турция.

Рис. 3. Солнечная электростанция

Приливные электростанции (ПЭС): Канада, Франция, США, Китай, Индия, Южная Корея.

8. Торговля электроэнергией

Как и другие товары, электроэнергию можно продавать. В последние годы экспорт электроэнергии в мире распределяется следующим образом: лидером по экспорту электроэнергии является Франция, которая реализует более 70 млрд кВт·ч электроэнергии, следующим крупным экспортером является Германия с реализуемой электроэнергией в размере 65,4 млрд кВт·ч. Также в список крупных экспортеров попадают Парагвай, Канада и Швейцария, которые экспортируют электроэнергию в размере 45,6 млрд кВт·ч, 42,7 млрд кВт·ч и 31,1 млрд кВт·ч соответственно. Российская Федерация находится на восьмом месте рейтинга крупных экспортеров электроэнергии, экспортируя больше 23 млрд кВт·ч.

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 |

20 стран мира с наибольшим экспортом электроэнергии

Страна Экспорт электроэнергии, млрд.кВт • ч
1. Германия 61,7
2. Франция 58,7
3. Канада 55,7
4. Швейцария 32,7
5. США 24,1
6. Чехия 20,0
7. Россия 18,6
8. Норвегия 17,3
9. Испания 16,9
10. Китай 16,6
11. Австрия 14,9
12. Швеция 14,7
13. ЮАР 14,2
14. Украина 12,6
15. Сербия 12,1
16. Мозамбик 11,8
17. Узбекистан 11,5
18. Дания 11,4
19. Польша 9,7
20. Нидерланды 9,3

Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:

20 стран мира с наибольшим экспортом электроэнергии википедия
Поиск по сайту:

Экономическая характеристика мировой энергетики

Мировое производство и потребление электроэнергии.

Электроэнергетика является одной из наиболее быстро развивающихся отраслей народного хозяйства. Связано это с тем, что уровень её развития является одним из решающих факторов успешного развития экономики в целом.

Объясняется это тем, что на сегодняшний день электроэнергия – это наиболее универсальный вид энергии.

По сравнению с серединой прошлого столетия выработка электроэнергии увеличилась более чем в 15 раз и сейчас составляет приблизительно 14,5 млрд. кВ∙ч, причем это происходило вследствие роста потребления крупнейшими развивающимися странами, идущими по пути индустриализации.

Так, за последние 5 лет энергопотребление в Китае выросло на 76%, Индии – на 31%, Бразилии – на 18%. В 2007 г. по сравнению с 2002 г. абсолютное энергопотребление снизилось в Германии – на 5,8%, в Великобритании – на 2,7%, Швейцарии – на 2,0, во Франции – на 0,6%.

В то же время в США энергопотребление продолжало повышаться.

В то же время в США энергопотребление продолжало повышаться. Сейчас они производят 4 млрд. кВ∙ч ежегодно. В Китае оно составляет 7,7% при ежегодной выработке 1,3 млрд. кВ∙ч, в Индии – 6,8%, в Бразилии – 6,1% (по данным на июнь 2008 года BP Statistical Review of World Energy).

По общей выработке электроэнергии регионы можно расположить таким образом: Северная Америка, Западная Европа, Азия, СНГ, где лидерство удерживает Россия с показателем 800 млн.

кВ∙ч в год, Латинская Америка, Африка, Австралия.

В странах первой группы большая доля электроэнергии вырабатывается на ТЭС (работающих на угле, мазуте и природном газе). Сюда можно отнести США, большинство стран Западной Европы и Россию.

Во вторую группу входят страны, где почти вся электроэнергия вырабатывается на ТЭС.

Это ЮАР, Китай, Польша, Австралия (использующая в основном уголь в качестве топлива) и Мексика, Нидерланды, Румыния (богатые нефтью и газом).

Третья группа образована странами, в которых велика или очень велика (до 99,5% — в Норвегии) доля ГЭС.

Это Бразилия (около 80%), Парагвай, Гондурас, Перу, Колумбия, Швеция, Албания, Австрия, Эфиопия, Кения, Габон, Мадагаскар, Новая Зеландия (около 90%). Но по абсолютным показателям производства энергии на ГЭС в мире лидируют Канада, США, Россия, Бразилия. Гидроэнергетика значительно расширяет свои мощности в развивающихся странах.

Четвертую группу составляют страны с высокой долей атомной энергии. Это Франция, Бельгия и Республика Корея.

Топливная промышленность мира

Основу мировой энергетики составляют 3 отрасли топливной промышленности.

Нефтяная промышленность мира

На современном этапе это ведущая отрасль мировой топливно-энергетической промышленности.

В 2007 году добыча нефти снизилась на 0,2% — до 3,6 млрд.

тонн. По сравнению с 2006 г. межрегиональные поставки нефти, по данным “ВP”, увеличились на 2,6% и достигли 1984 млн. т

Что касается географического распределения запасов нефти, то доля развивающихся стран в этих запасах — 86%. Наиболее крупные нефтяные запасы сосредоточены в пределах зарубежной Азии (без СНГ 70%). Особенно здесь выделяется Ближний и Средний Восток, где сосредоточено около 60% запасов и более 40% мировой добычи нефти.

В странах этого региона располагаются государства с наиболее крупными запасами нефти: Саудовская Аравия (более 35 млрд. тонн), Ирак (более 15 млрд. тонн), Кувейт (более 13 млрд. тонн), ОАЭ и Иран (около 13 млрд. тонн). Из других азиатских стран по запасам нефти можно выделить Китай и Индонезию.

В пределах Латинской Америки запасы нефти составляют приблизительно 12% от мировых. На сегодняшний день здесь особо выделяется Венесуэла (более 11 млрд.

тонн), Мексика (около 4 млрд. тонн).

На долю Африки приходится приблизительно 7% мировых запасов нефти. По их величине выделяются Ливия (40% общеафриканских запасов), Алжир, Египет, Нигерия.

Что касается СНГ, то его доля оценивается в 6%. Однако Россия по разным оценкам имеет от 6,7 до 27 млрд. тонн.

Всего нефть добывают в 80 странах.

Крупнейшие из них приведены в таблице 1

Таблица 1.

Крупнейшие страны-производители нефти в 2007 г., млн. т.

Страна-производитель Показатель добычи за 2007 год
Саудовская Аравия 493
США 350
Россия 330
Китай 187
ОАЭ 136
Венесуэла 134
Норвегия 119

Газовая промышленность мира

Благодаря высоким потребительским свойствам, низким издержкам добычи и транспортировки, широкой гамме применения во многих сферах человеческой деятельности, природный газ занимает особое место в топливно-энергетической и сырьевой базе.

К настоящему времени добыча природного газа увеличилась приблизительно в 5,5 раз и сейчас составляет 2,4 триллиона м³ ежегодно.

Разведанные запасы природного газа оцениваются приблизительно в 150 триллиона м³.

По разведанным запасам природного газа (их объем все время растет) особенно выделяются СНГ и Юго-Западная Азия (по 40% мировых запасов), из отдельных стран – Россия, где сосредоточено около одной третьей мировых запасов или 50 триллионов м³ (почти 90% запасов СНГ) и Иран ( 15% мировых ).

В «первую десятку» газодобывающих стран мира входят Россия (около 600 млрд.

м³), США (550 млрд. м³), Канада (170 млрд. м³), Туркменистан, Нидерланды, Великобритания, Узбекистан, Индонезия, Алжир, Саудовская Аравия. Крупнейшими потребителями газа являются США (приблизительно 650 млрд. м³), Россия ( 350 млрд. м³ ), Великобритания ( около 90 млрд. м³) и Германия ( около 80 млрд. м³ ).

Угольная промышленность мира

Несмотря на снижение доли угля в энергопотреблении, угольная промышленность продолжает оставаться одной из ведущих отраслей мировой энергетики.

По сравнению с нефтяной промышленностью, она лучше обеспечена ресурсами.

В Настоящее время ежегодно добывается около 5 млрд. тонн угля.

Отметим, что угля на Земле гораздо больше, чем нефти и природного газа.

При нынешнем уровне потребления подтвержденных запасов газа должно хватить на 67 лет, нефти — на 41 год, а угля — на 270 лет.

Прогнозные ресурсы угля на Земле в настоящее время составляют более 14,8 трлн. тонн, а мировые промышленные запасы угля — свыше 1 трлн. тонн. При этом примерно три четверти мировых запасов угля приходятся на страны бывшего СССР, США и Китай.

Мировой рынок угля в настоящее время является более конкурентным, чем нефтяной и газовый, поскольку месторождения и добыча угля расположены практически по всем континентам и регионам мира.

Уголь будет играть особенно важную роль в электроэнергетике тех регионов, в которых альтернативных видов топлива мало. Благодаря своей сравнительной дешевизне этот энергоноситель остается особенно важным для развивающихся стран Азии.

Уголь является самым распространенным энергетическим ресурсом в мире, и его доля в мировой энергетике превышает 24% (к 2030 году ожидается увеличение его доли до 28%), это второе место после нефти (36%).

Примерно 13% добытого каменного угля используется металлургическими компаниями.

Ведущие страны по добыче угля представлены в таблице 2

Таблица 2. Страны-лидеры по добыче угля в 2006 г., млн. т.

Место в мире Страна-производитель Объём добычи
1 Китай 2048
2 США 1053
3 Индии 447,3
4 Австралии 373,8
5 Россия 309,2
6 ЮАР 256,6
7 Германия 190
8 Индонезия 190
9 Польша 156,1
10 Казахстан 92

Мировые запасы угля составляют 1,2 трлн.

т. Примерно три четверти мировых запасов угля приходятся на страны бывшего СССР, США и Китай. При этом в недрах России сосредоточена треть мировых ресурсов угля, или 173 млрд. тонн, а в Казахстане — 34 млрд. тонн

В отличие от нефти и газа на экспорт идет небольшая часть добываемого угля — 10%. По данным Международного института угля, основными экспортерами угля являются Австралия (231 млн. тонн в 2006 году), Индонезия (108 млн.

тонн) и Россия (76 млн. тонн). Основные потребители угольной продукции — Япония (178 млн. тонн в 2006 году) и Южная Корея (77 млн. тонн).

Китай является крупнейшим потребителем угля (2,4 млрд. тонн в 2006 году), что связано с большой долей угля в энергетике страны. Согласно данным The China Daily, потребление угля в Китае к 2010 году достигнет 2,87 млрд.

тонн.

Среди регионов по добыче угля лидируют Зарубежная Азия (40 % мировой добычи), Западная Европа, Северная Америка (немногим более 20%) и страны СНГ.

страна Производство, млрд. КВт.

час

страна Производство, млрд. КВт. час
1. США 6. Великобритания
2. Франция 7. Респ. Корея
3. Япония 8. Швеция
4. Германия 9. Канада
пятые

Российская Федерация

10. Украина

Однако, согласно доле атомных электростанций в общем производстве электроэнергии, страны мира сильно отличаются друг от друга. В Любляне Литва эта доля составляет 82%, в Франция — 77, v Бельгия — 55, v Швеция — 53%, тогда как в США — 20%, в Россия — 14%.

До сих пор альтернативные источники обеспечивают лишь малую часть глобального спроса на электроэнергию. Только в некоторых странах Центральная Америка, на Филиппины и v Исландия Геотермальные электростанции очень важны.

⇐ предыдущий123456789следующий ⇒

Дата подачи: 2015-05-30; Посещений: 1326; Опубликованные материалы нарушает авторские права?

| | Защита персональных данных

Не нашли то, что искали? Использовать поиск:

Читайте также:

statc.ru

Топ-10 мировых производителей электроэнергии по странам

Подробности

Подробности


Опубликовано 01.03.2016 12:39


Просмотров: 50686

Первая в мире электростанция был спроектирована и построена в 1878 году Зигмундом Шуккертом, чтобы осветить грот во дворовом саду Линдерхофа в Баварском городке Этталь. На этой электростанции было установлено 24 динамоэлектрических генератора с приводом от парового двигателя.

Первый в истории эксперимент с участием электроэнергии осуществил греческий философ, Фалес Милетский, потерев Янтарь (окаменевшая смола) о мех. Это явление было объяснено как статическое электричество. Слово «электричество», таким образом, происходит от греческого слова Elektron, что в переводе означает Янтарь.

Электричество может генерироваться несколькими способами. Наиболее широко используемым методом является метод электромагнитной индукции. В этом методе, механическая энергия, вырабатываемая тепловыми двигателями, гидроэлектроэнергия, энергия приливов и отливов, или энергия ветра разгоняет и заставляет вращаться электрический генератор, который вырабатывает электричество. Большая часть производства электроэнергии по всему миру вырабатывается именно таким методом.

В следующей таблице приводятся данные годового чистого производства электроэнергии, а также годовой расчет на душу населения чистого производства электроэнергии из десяти стран.












Страна Чистое производство (млрд. КВТ/Ч)

В расчете на душу населения. (КВТ/Ч)

Китай 5 649  5010
США 4 297 13536
Индия               1 208 1 108
Россия  1 064 7188
Япония 1 061 7960
Канада  615 18481
Германия            614 7102
Франция              555  8808
Бразилия            582 2893
Южная Корея 517 9704

*Все цифры приведены за 2015 год.

 

Топ 10 стран по производству электроэнергии

 

Китай

На первом месте находится Китай с производством электроэнергии 5 649 миллиардов киловатт-часов. Он входит в тройку стран, которая имеет обильные запасы угля и гидроэнергетических ресурсов. Сектор электроэнергетики Китая испытал большой прорыв в апреле 1996 года, когда был реализован «Закон электроэнергии». Этот закон обеспечивается оптимальное развитие электроэнергетики путем надлежащего регулирования производства, распределения и потребления электроэнергии. Закон также направлен на защиту законных прав инвесторов, менеджеров и потребителей, касающихся электроэнергетики.

 

США

Производство электроэнергии правительством США было оценена примерно в 4 297 млрд. киловатт-часов, что делает их вторым производителем электроэнергии в мире. Основные источники энергии, используемые для выработки электроэнергии в США включают в себя тепловые источники, гидроэнергетику, энергию ветра, ядерную энергетики, геотермальную энергию и другие возобновляемые источники.

 

Индия

Чистая выработка электроэнергии составляет 1 208 миллиардов киловатт-часов в год по состоянию на 2015, Индия занимает третье место в списке десяти ведущих мировых производителей электроэнергии. Большинство, едва ли не больше, чем 50%, электроснабжения Индии поступает от угольных электростанций. Гидроэнергетика и возобновляемые энергетические ресурсы вносят меньшую долю. Генерирующие мощности Индии многократно возросли в последние два десятилетия. Этот рост позволил Индии, стать одним из наиболее быстро растущих рынков для производства электроэнергии. Быстрый рост экономики, доходы населения и развитие городов дали толчок развитию электроэнергетического сектора в Индии.

 

Россия

Россия является второй по величине страной по запасам угля. Россия произвела 1 064 миллиардов киловатт-часов электроэнергии в 2015 году. Наша страна производит электроэнергию в основном из природного газа и угля. Более 60% электроэнергии вырабатывается на тепловых электростанциях. Другими источниками электроэнергии в России являются: атомные реакторы, гидроэлектростанции, ветровые, и другие возобновляемые ресурсы. Россия пятый по величине генератор гидроэлектроэнергии в мире. Россия, как известно экспортирует электроэнергию в такие страны, как Польша, Латвия, Финляндия, Турция, Литва и до недавнего времени в Украину.

 

Япония

Япония — которая произвела чистой электроэнергии на 1 061 млрд киловатт-часов в 2015 — является не только самодостаточной, когда речь заходит об электроснабжении; но она также является крупным экспортером оборудования, необходимого в энергетическом секторе. Электроэнергетический сектор в Японии в значительной мере полагается на ядерные ресурсы, и ядерную энергию. Однако, сейсмическая активность оказались опасными, и большинство АЭС были вынуждены закрыться. Япония добывает большую часть электричества с помощью гидроэнергии, наряду с другими возобновляемыми источниками энергии, такими как биомасса (дерево, трава, навоз, и т.п.), ветер, солнечная энергия и др.

 

Канада

Канада выступает на шестой позиции в этом списке с производством 615 миллиардов киловатт-часов электроэнергии в 2015 году. Помимо возобновляемых источников и атомной электростанции, гидроэнергетика играет важную роль в производстве электроэнергии в Канаде. Другие источники генерации электрической энергии относятся к энергии ветра, угля и природного газа, древесины, нефтепродуктов и кокса.

 

Германия

Мало того, что Германия самая большая страна в мире для производства электроэнергии за счет использования неводных средств и возобновляемых источников, она также является вторым по величине производителем ветровой электроэнергии. Германия произвела 614 миллиардов киловатт-часов в 2015 году и находится на седьмой позиции среди десяти ведущих мировых производителей электроэнергии. Ископаемые виды топлива, биотопливо, ветровая и солнечная энергетика являются одними из источников, используемых для выработки электроэнергии в Германии.

 

Франция

В 2015 году Франция получила чистую выработку электроэнергии в 555 млрд киловатт-часов, что делает ее восьмой в этом списке. Первичным источником энергии во Франции является ядерная энергетика. Более 75% общего производства электроэнергии приходится на АЭС. Благодаря этому, атомную энергетику во Франции называют «историей успеха», которая предоставляет эффективное, свободное от двуокиси углерода, дешевое, и экологически чистое производство электричества. В 2012 году, Франция была крупнейшим экспортером электроэнергии.

 

Бразилия

Бразилия имеет самый большой рынок электроэнергии в Южной Америке. Она также имеет наибольшую емкость водных ресурсов. Электроэнергетика Бразилии сильно зависит от гидроэнергетики. Она произвела 582 млрд киловатт-часов чистой электроэнергии в 2015 году. Более чем 80% потребности в электрической энергии осуществляет гидроэнергетика. Эта крайняя зависимость от гидроэлектроэнергии делает Бразилию уязвимой для дефицита электроэнергии в периоды засухи. Другие источники электроэнергии включают атомную энергетику, биотопливо, природный газ, уголь, масла, и энергию ветра.

 

Южная Корея

На десятой позиции в этом списке производителей электроэнергии, находится Южная Корея с чистой выработкой электроэнергии в 517 миллиардов киловатт-часов в 2015 году. Более чем две трети всего производства электроэнергии приходится на тепловые электростанции. Недостатки в использовании гидроэнергетики и других возобновляемых источников для производства электроэнергии были удовлетворены путем сосредоточения и развития атомной энергетики.

 

Различные способы производства электроэнергии

Основные методы, используемые, чтобы генерировать электрическую энергию из других видов энергии являются:

  • Электромагнитная индукция
    На основе закона Фарадея, это наиболее используемая форма производства электроэнергии, где кинетическая энергия преобразуется в электричество.
  • Статическое электричество
    <В этом методе, электричество генерируется путем физического разделения и переноса заряда. Примером может служить молния.
  • Электрохимия
    Как следует из названия, этот метод, вырабатывает электроэнергию путем прямого преобразования химической энергии в электрическую. Примером может служить батарея.
  • Фотоэлектрический эффект
    В этом методе электричество генерируется путем преобразования света в электрическую энергию. Примером могут служить солнечные батареи.
  • Термоэлектрический эффект
    Разница температур напрямую преобразуется в электричество посредством термоэлектрического эффекта. Примером может служить термоэлемент.
  • Пьезоэлектрический эффект
    В этом методе, электроэнергия вырабатывается из механической деформации в электрически анизотропные молекулы.
  • Ядерное Превращение
    Генерация и ускорение заряженных частиц, таких как излучение альфа-частиц, генерирует электричество в этом методе.

 

Сегодня не только сложно, но даже невозможно вообразить жизнь без электричества. Однако, верно и то, что более 80% загрязнения воздуха вызвано из-за производства электроэнергии. Хотя немыслимо, функционировать без электричества, главное не переусердствовать, и взять производство электроэнергии под разумный контроль, пока это еще возможно, а для этого понадобится оборудование для ЛЭП которые вы можете выбрать обратившись в компанию «Норма-кабель».

Читайте также

Добавить комментарий

electrowelder.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о