Зд принтер возможности: 3d принтеры и их возможности в разных сферах жизни

Содержание

3D-принтер: что это и как он работает? | GeekBrains

Описание возможностей 3д принтера и история его появления.

https://d2xzmw6cctk25h.cloudfront.net/post/1999/og_image/501bb6c82a53bb3bc2a0fee73b0c9e9e.png

В 2011 году принтер, который заправили биогелем, напечатал человеческую почку прямо во время конференции TED. Два года назад Adidas анонсировала новую модель кроссовок, которые печатают на 3D-принтере за 20 минут. А недавно компания Илона Маска SpaceX успешно провела испытания двигателей космического корабля, которые тоже напечатали на 3D-принтере.

В современном мире 3D-печать — это не удивительная технология будущего, а хорошо изученная реальность. Ее применяют в архитектуре, строительстве, медицине, дизайне, производстве одежды и обуви и других сферах. По запросу «3D-принтер» поисковики выдают сотни чертежей и прототипов разной сложности — от мыльницы и настольной лампы до автомобильного двигателя и даже жилого дома. 

Любой может купить принтер и напечатать чехол для смартфона, но дальше 3д печати по чертежу идут не все. В этой статье расскажем, когда появилась 3D-печать, как можно применять технологию и какие у нее перспективы.

Как появился трехмерный принтер

Не будем слишком утомлять вас датами и кратко перескажем историю 3D-печати.

Предвестник трехмерной печати. В начале 80-х доктор Хидео Кодама разработал систему быстрого прототипирования с помощью фотополимера — жидкого вещества на основе акрила. Технология печати была похожа на современную: принтер печатал объект по модели, послойно. 

Первый 3D-принтинг. Изготовление физических предметов с помощью цифровых данных продемонстрировал Чарльз Халл. В 1984 году, когда компьютеры еще не сильно отличались от калькуляторов, а до выхода Windows-95 было десять лет, он изобрел стереолитографию — предшественницу 3D-печати. Работала технология так: под воздействием ультрафиолетового лазера материал застывал и превращался в пластиковое изделие. Форму печатали по цифровым объектам, и это стало бумом среди разработчиков — теперь можно было создавать прототипы с меньшими издержками. 

Первый 3D-принтер. Источник: habr

Первый производитель 3D-принтеров. Через два года Чарльз Халл запатентовал технологию и открыл компанию по производству принтеров 3D Systems. Она выпустила первый аппарат для промышленной 3D-печати и до сих пор лидирует на рынке. Правда, тогда принтер называли иначе — аппаратом для стереолитографии.

Популярность 3D-печати и новые технологии. В конце 80-х 3D Systems запустила серийное производство стереолитографических принтеров. Но к тому времени появились и другие технологии печати: лазерное спекание и моделирование методом наплавления. В первом случае лазером обрабатывался порошок, а не жидкость. А по методу наплавления работает большинство современных 3D-принтеров. Термин «3D-печать» вошел в обиход, появились первые домашние принтеры.

Революция в 3D-печати. В начале нулевых рынок раскололся на два направления: дорогие сложные системы и те, что доступны каждому для печати дома. Технологию начали применять в специфических областях: впервые на 3D-принтере напечатали мочевой пузырь, который успешно имплантировали.

Печать тестового образца почки. Источник: BBC

В 2005 году появился первый цветной 3D-принтер с высоким качеством печати, который создавал комплекты деталей для себя и «коллег».

Как устроен 3D-принтер

В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина. 

Вот из каких деталей состоит 3D-принтер, не считая корпуса:

  • экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей; 
  • рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
  • линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
  • фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
  • рама — соединяет все элементы принтера.

Схема 3D-принтера. Источник: Lostprinters

Все это управляется компьютером.

Как создают изделия

За создание трехмерного изделия отвечает аддитивный процесс 3д-печати — это когда при изготовлении предмета слои материала накладываются друг на друга, снизу вверх, пока не получится копия формы в чертеже. Так печатают изделия из пластика. А фотополимерная печать работает по технологии стереолитографии (SLA): под воздействием лазерного излучателя фотополимеры затвердевают. Кроме пластика и фотополимерных смол, современные 3D-принтеры работают с металлоглиной и металлическим порошком. 

Печать состоит из непрерывных циклов, которые повторяются один за другим — на один слой материала наносится следующий, и печатающая головка двигается, пока на рабочей поверхности не окажется готовый предмет. Отходы печати принтер сам удаляет с рабочего стола.

Как работает 3D-чертеж

Принтер печатает изделие по 3D-чертежу: его создают на компьютере в специальной программе, затем сохраняют в формате STL. Этот файл выводят в программу резки для принтера — она помогает задать модели физические свойства изделия, например плотность. Далее программа преобразует модель в инструкцию для экструдера и выгружает ее на принтер, который начинает печатать изделие.

3D-чертеж легко сделать в домашних условиях — почитайте инструкцию на habr. 

Как запрограммировать 3D-принтер

Краткая инструкция по настройке принтера:

  1. Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
  2. Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать. 
  3. Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
  4. Наблюдать за печатью.

Можно ли применять напечатанные изделия

Зависит от качества материала, принтера и конечного изделия. Часто домашние принтеры неточно передают форму и цвет предмета. Изделия из пластика нужно дополнительно обработать: иногда они печатаются с заусенцами и дефектами и почти всегда с ребристой поверхностью. 

Изделие после и до обработки. Источник: 3D-Today

Для обработки поверхности есть несколько способов — не все подходят для домашнего применения:

  • механическая обработка — шлифовка вручную, срезание заусенцев;
  • химическая — погружение в ацетон, пескоструйная обработка, нанесение спецраствора кисточкой. 

Что можно напечатать на 3D-принтере

В интернете полно подборок с инструкциями для печати 3D-изделий. 3D-Today публикует фотографии работ владельцев принтеров, от мелких запчастей до скульптур. На «Хабре» уже три года назад постили список «50 крутых вещей для печати на 3D-принтере». Make3D написали о более масштабных проектах — печати автомобилей, оружия, солнечных батарей и протезов.

Есть ряд перспективных областей, в которых уже применяют 3D-печать.

Изготовление моделей по собственным эскизам. Константин Иванов, создатель сервиса 3DPrintus, в интервью «Афише» рассказал, что 3D-печать приведет к расцвету customizable things: любой сможет собрать и распечатать нужное изделие онлайн. Например, сделать модель робота и заказать его печать на промышленном принтере, создать и распечатать свой дизайн обручальных колец или обуви. Примеры таких проектов — Thinker Thing и Jweel. 

Быстрое прототипирование. Самая популярная область, в которой используют трехмерную печать. На 3D-принтерах делают тестовые модели протезов, прототипы лечебных корсетов, барельефов, олимпийского снаряжения.

Прототипы детских протезов, 3D-печать. Источник: 3D-Pulse

Сложная геометрия. 3D-принтер легко справляется с изготовлением моделей любой формы. Несколько примеров:

— в австралийском университете исследовали возможности 3D-принтера и напечатали табурет в форме отпечатка пальца;

— шеф-повар из Дании победил в конкурсе высокой кухни: он напечатал на 3D-принтере миниатюрные блюда сложной формы из морепродуктов и свекольного пюре;

Одно из победивших блюд шеф-повара. Источник: 3D-Pulse

— в немецком институте разработали систему для ускоренной 3D-печати — за 18 минут принтер изготавливает сложное геометрическое изделие высотой в 30 см. Обычно у принтеров уходит час на печать карманных фигурок.

Технологии 3D-печати 

Кратко об основных методах 3D-принтинга.

Стереолитография (SLA). В стереолитографическом принтере лазер облучает фотополимеры, и формирует каждый слой по 3D-чертежу. После облучения материал затвердевает. Прочность изделия зависит от типа полимера — термопластика, смол, резины. 

Цветную печать стереолитография не поддерживает. Из других недостатков — медленная работа, огромный размер стереолитографических установок, а еще нельзя сочетать несколько материалов в одном цикле.

Эта технология — одна из самых дорогих, но гарантирует точность печати. Принтер наносит слои толщиной 15 микрон — это в несколько раз тоньше человеческого волоса. Поэтому с помощью стереолитографии делают стоматологические протезы и украшения. 

Промышленные стереолитографические установки могут печатать огромные изделия, в несколько метров. Поэтому их успешно применяют в производстве самолетов, судов, в оборонной промышленности, медицине и машиностроении. 

Селективное лазерное спекание (SLS). Самый распространенный метод спекания порошковых материалов. Другие технологии — прямое лазерное спекание и выборочная лазерная плавка.

Метод изобрел Карл Декарт в конце восьмидесятых: его принтер печатал методом послойного вычерчивания (спекания). Мощный лазер нагревает небольшие частицы материала и двигается по контурам 3D-чертежа, пока изделие не будет готово. Технологию используют для изготовления не цельных изделий, а деталей. После спекания детали помещают в печь, где материал выгорает. SLS использует пластик, керамику, металл, полимеры, стекловолокно в виде порошка.

На атлете — кроссовки New Balance, которые изготовили с помощью лазерного спекания. Источник: 3D-Today

Технологию SLS используют для прототипов и сложных геометрических деталей. Для печати в домашних условиях SLS не подходит из-за огромных размеров принтера.

Послойная заливка полимера (FDM), или моделирование методом послойного наплавления. Этот способ 3d-печати изобретен американцем Скоттом Крампом. Работает FDM так: материал выводится в экструдер в виде нити, там он нагревается и подается на рабочий стол микрокаплями. Экструдер перемещается по рабочей поверхности в соответствии с 3D-моделью, материал охлаждается и застывает в изделие. 

Преимущества — высокая гибкость изделий и устойчивость к температурам. Для такой печати используют разные виды термопластика. FDM — самая недорогая среди 3D-технологий печати, поэтому принтеры популярны в домашнем использовании: для изготовления игрушек, сувениров, украшений. Но в основном моделирование послойным наплавлением используют в прототипировании и промышленном производстве — принтеры довольно быстро печатают мелкосерийные партии изделий. Предметы из огнеупорных пластиков изготовляют для космической отрасли. 

Струйная 3D-печать. Один из первых методов трехмерной печати — в 1993 году его изобрели американские студенты, когда усовершенствовали обычный бумажный принтер, и вскоре технологию приобрела та самая компания 3D Systems. 

Работает струйная печать так: на тонкий слой материала наносится связующее вещество по контурам чертежа. Печатная головка наносит материал по границам модели, и частицы каждого нового слоя склеиваются между собой. Этот цикл повторяется, пока изделие не будет готово. Это один из видов порошковой печати: раньше струйные 3D-принтеры печатали на гипсе, сейчас используют пластики, песчаные смеси и металлические порошки. Чтобы сделать изделие крепче, после печати его могут пропитывать воском или обжигать.

Предметы, которые напечатали по этой технологии, обычно долговечные, но не очень прочные. Поэтому с помощью струйной печати делают сувениры, украшения или прототипы. Такой принтер можно использовать дома. 

Эти конфеты сделали на кондитерском струйном 3D-принтере ChefJet: вместо пластика он использует воду, сахар, шоколад и пищевые красители. Источник: 3Dcream.ru

Еще струйную технологию используют в биопечати — наносят живые клетки друг на друга послойно и таким образом строят органические ткани. 

Где применяют 3D-печать

В основном в профессиональных сферах.

Строительство. На 3D-принтерах печатают стены из специальной цементной смеси и даже дома в несколько этажей. Например, Андрей Руденко еще в 2014 году напечатал на строительном принтере замок 3 × 5 метров. Такие 3D-принтеры могут построить двухэтажный дом за 20 часов.

Медицина. О печати органов мы уже упоминали, а еще 3D-принтеры активно используют в протезировании и стоматологии. Впечатляющие примеры — с помощью 3D-печати врачам удалось разделить сиамских близнецов, а кошке без четырех лап поставили протезы, которые напечатали на принтере. 

Подробнее о 3D-принтинге в медицине можно узнать в статье издания 3D-Pulse.

Космос. С помощью трехмерной печати делают оборудование для ракет, космических станций. Еще технологию используют в космической биопечати и даже в работе луноходов. Например, российская компания 3D Bioprinting Solutions отправит в космос живые бактерии и клетки, которые вырастят на 3D-принтере. Создатель Amazon Джефф Безос презентовал прототип лунного модуля с напечатанным двигателем, а космический стартап Relativity Space строит фабрику 3D-печати ракет. 

Авиация. 3D-детали печатают не только для космических аппаратов, но и для самолетов. Инженеры из лаборатории ВВС США изготавливают на 3D-принтере авиакомпоненты — например, элемент обшивки фюзеляжа — примерно за пять часов.

Архитектура и промышленный дизайн. На трехмерных принтерах печатают макеты домов, микрорайонов и поселков, включая инфраструктуру: дороги, деревья, магазины, освещение, транспорт. В качестве материала обычно используют недорогой гипсовый композит. 

Одно из необычных решений — дизайн бетонных баррикад от американского дизайнера Джо Дюсе. После терактов с грузовыми автомобилями, которые врезались в толпу людей, он предложил макет прочных и функциональных заграждений в виде конструктора, которые можно напечатать на 3D-принтере.

Изготовить прототип помогла компания UrbaStyle, которая печатает бетонные формы на строительных 3D-принтерах

Образование. С помощью 3D-печати производят наглядные пособия для детских садов, школ и вузов. В некоторых московских школах с 2016 года есть трехмерные принтеры: на уроках химии дети разглядывают 3D-модели молекул и проводят реакции в напечатанных пробирках, на физике изучают электрическую цепь на 3D-прототипе токопроводящего стенда, а еще сами печатают себе ручки на уроках ИЗО.

Узнать больше о 3D-технологиях в школах можно на сайте «Ассоциации 3D-образования». 

А еще 3D-печать помогает в быту, производстве одежды, украшений, картографии, изготовлении игрушек и дизайне упаковок.

20 примеров применения 3D-печати

Прогресс 3D-печати за последние годы набрал настолько стремительную скорость, что скоро мы перестанем рассказывать о том, что можно создать с помощью аддитивного производства. Будет проще упомянуть то, что сделать нельзя. Да и этот список будет стремительно сокращаться. Но пока давайте взглянем на некоторые примеры, показывающие широкий спектр возможностей 3D-печати. Заранее предупреждаем: список далеко не полон.

Плод

Подарок для нетерпеливых родителей

Молодые родители зачастую испытывают непреодолимое влечение обзавестись самыми всевозможными предметами, так или иначе связанными с их ребенком, пусть даже еще не рожденным. Японская компания Fasotec предлагает будущим родителям модели еще не рожденных младенцев, выполненные по изображениям настоящих плодов, полученных с помощью магнитно-резонансной томографии. Готовая модель состоит из двух материалов – фигурки плода, выполненной из белого фотополимера, и прозрачного материала, имитирующего форму утробы матери. При цене в примерно $1 275 удовольствие далеко не из дешевых, но у Fasotec уже появились конкуренты. Так, компания 3D Babies предлагает схожую услугу всего за $200, хотя размер готовой модели значительно меньше, да и качество не совсем на одном уровне.

Хотя желание заполучить подобную модель может показаться несколько странным, есть вполне логичное объяснение. Как оказывается, идея изначально была направлена на предоставление слепым родителям возможность «взглянуть» на УЗИ еще не рожденного ребенка.

Оружие

Функциональная 3D-печатная ствольная коробка от AR-15 без каких-либо номеров

Функциональная 3D-печатная ствольная коробка от AR-15 без каких-либо номеров

Возможность 3D-печати оружия не на шутку переполошила правоохранительные органы по всему миру. В конце концов, даже простые FDM принтеры позволяют создавать полностью пластиковые пистолеты. Пусть такое оружие и примитивно, но даже одноразовый пистолет с одним единственным патроном в руках преступника может стоить кому-то жизни, а проследить такое оружие невозможно. Тем не менее, находятся и люди, считающие, что 3D-печать оружия должна быть разрешена. Так, Конституция США дает право гражданам на свободное ношение оружия, хотя определенные ограничения все равно применяются. Некоммерческая организация Defence Distributed, выпустившая в свободный доступ пластиковый пистолет Liberator, пошла дальше, обнародовав дизайн нижней части ствольной коробки карабина AR-15. AR-15 – фактически гражданский аналог, даже прототип автоматической винтовки M-16, состоящей на вооружении нескольких стран мира. Нижняя же часть ствольной коробки несет на себе регистрационный номер – это единственная часть винтовки, которую нельзя приобрести как запасную. Таким образом, печать этой части может позволить обойти стороной необходимость регистрации оружия. Некоторые страны уже наложили запрет на 3D-печать оружия, хотя не совсем непонятно, как применять этот запрет на практике.

Одежда

Один из дизайнов Снежаны Гросс

Один из дизайнов Снежаны Гросс

Некоторые расходные материалы для 3D-печати, в особенности мягкие фотополимеры, вполне пригодны для изготовления одежды и даже белья. Бюстгальтер на иллюстрации был изготовлен методом лазерного спекания из нейлона. Этот дизайн от Continuum Fashion призван продемонстрировать возможности, открываемые 3D-печатью для кутюрье. Однако не думайте, что это экспериментальная модель: компания предлагает готовые изделия на продажу на сайте Shapeways.

Не обошли новую технологию стороной и российские дизайнеры: Снежана Гросс продемонстрировала дизайны повседневной одежды, интегрирующие функциональные 3D-печатные компоненты.

Предметы искусства

Распечатать просто. Сфотографировать – как повезет

Распечатать просто. Сфотографировать – как повезет

Не желаете ли реплику Венеры Милосской? Никаких проблем, только выберите материал и способ печати. Правда, мрамора в меню пока еще нет, но имитаторы песчаника уже имеются. Одним из первых материалов для 3D-печати вообще был гипс. Трехмерное изображение оригинала можно получить с помощью обычной фотографии с последующей конвертацией в 3D. Кроме того, в последнее время на рынке появляется все больше 3D-сканеров, включая портативные ручные варианты, способные снимать изображения крупногабаритных объектов. Остается сущий пустяк – договориться о стереофотосессии с охраной Лувра.

Хотя, если вам лень делать цифровые модели самим, их всегда можно скачать.

Продукты

Что на завтрак?

Что на завтрак?

Пусть до гигантских хот-догов еще далеко, но печатать фаршем 3D-принтеры уже научились. Примером тому служит кулинарный принтер Foodini –простое и практичное устройство, использующее шприцевую экструзию. Причем, печать возможна не только фаршем, но и любым пастообразным продуктом – тестом, сыром, томатным пюре. Единственное, что Foodini пока не по силам, это термическая обработка. Стоит ожидать, что в скором времени появятся устройства, комбинирующие 3D-печать с холодильными агрегатами и, скажем, микроволновыми печами. Тогда могут стать былью научно-фантастические сказки о «репликаторах». Одно нажатие кнопки, и устройство выложит желаемую пиццу и запечет ее на радость пользователю. Только один вопрос: вам тонкое тесто или пышное?

Персонажи

Части моделей, использовавшихся для анимации главного героя мультфильма ParaNorman

Части моделей, использовавшихся для анимации главного героя мультфильма ParaNorman

Будь-то миниатюрная версия гигантского робота из любимой манги, жуткое инопланетное создание из «Чужого» или фигурка Киану Ривса (как в черном плаще и солнцезащитных очках, так и с бородой и сэндвичем, сидя на лавочке), 3D-печать позволяет создавать реплики героев игр и фильмов на радость фанатам. А тот факт, что распечатать подобные сувениры можно даже на бытовых 3D-принтерах, открывает широкие возможности для любителей коллекционировать подобные модели – ведь далеко не все из них доступны в продаже. Хотите модель редкого самолета? Напечатайте ее.

А что самое интересное, это применение уже возымело обратный эффект. Персонажи мультфильма ParaNorman были таки распечатаны. Как и костюм нового Робокопа. Правда, внутри него все равна была начинка из человека. Но зачем останавливаться на простой визуализации?

Домашние роботы

Ранний прототип «терминатора»

Ранний прототип «терминатора»

Появление недорогих плат Arduino сделало возможным домашнее проектирование самых разных устройств с электронной начинкой. Вот вам и собственные 3D-печатные роботы. Напечатали корпус, вставили сервомоторы и плату, и у вас новый помощник по хозяйству. Но что делать людям, которые не разбираются в программировании или элементарной пайке? Ученые из Массачусетского технологического института разрабатывают проект, направленный на автоматизацию проектирования и постройки домашних роботов. В идеале, пользователь должен будет лишь задать необходимые функции для будущего устройства, после чего система скомпилирует необходимый дизайн и отправит его на печать. Несколько часов спустя можно будет забрать готовое устройство – робота-паучка для протирки люстр или автомат для переворачивания блинов.

Авиация

3D-печатная деталь, используемая в прототипах китайских истребителей пятого поколения

3D-печатная деталь, используемая в прототипах китайских истребителей пятого поколения

Игрушечные самолеты мы уже упомянули. А как насчет настоящих? В авиастроительной промышленности тоже есть место аддитивному производству, хотя здесь уже не обойтись без дорогих промышленных установок, способных создавать высококачественные детали, включая цельнометаллические. Ведущие авиастроительные корпорации, включая Boeing и Lockheed Martin, уже испытывают технологии лазерного спекания и плавки для производства систем вентиляции, несущих компонентов и даже деталей реактивных двигателей. Китайские же инженеры взялись за дело с настоящим размахом, создавая установки для аддитивного производства деталей весом до 300 тонн.

Космос

Dragon v2 – новейшее детище компании Space

Dragon v2 – новейшее детище компании Space

Космическая промышленность не отстает от авиационной по заинтересованности в 3D-печати. NASA успешно испытала титановые форсунки ракетных двигателей, а несколько недель назад Илон Маск, глава частной космической компании SpaceX провел презентацию нового орбитального корабля Dragon v2, также использующего двигатели с 3D-печатными деталями.

Биопечать

Биоручки могут помочь в лечении переломов

Биоручки могут помочь в лечении переломов

Сосуды, ткани, целые органы – сразу несколько компаний занимаются разработкой производства органических имитаторов, полностью аналогичных натуральным тканям. Хотя до трансплантации 3D-печатных органов еще далеко, работы в этом направлении ведутся. Параллельно с производством органических тканей с нуля разрабатываются и методы восстановления поврежденных тканей – например хрящевых или костных. Устройства, называемые «биоручками», способны наносить живые клетки на поврежденные участки, способствуя их заживлению.

Протезы

Титановые ортопедические протезы с пористой структурой для улучшенной остеоинтеграции

Титановые ортопедические протезы с пористой структурой для улучшенной остеоинтеграции

А как быть, если ткани не подлежат восстановлению? 3D-печать может помочь с протезированием. Так, шведская компания Arcam создает установки для электронно-лучевой плавки, позволяющие создавать фактически монолитные металлические изделия, в том числе и из титана. Титановые ортопедические протезы стали одним из наиболее востребованных изделий, создаваемых на устройствах этой компании – по статистике компании их число превышает тридцать тысяч экземпляров.

Мало того, 3D-печатные конечности вполне могут конкурировать с высокотехнологичными образцами с одной лишь разницей – их стоимость не идет ни в какое сравнение. Многие ли люди смогут позволить себе протез руки ценой в десятки тысяч долларов? А как насчет полностью функционального протеза за $50? И это возможно.

Еще более распространенным применением аддитивного производства служит стоматологическое протезирование. Если вам недавно поставили коронку или мостик, вполне возможно, что они были отлиты по моделям, созданным с помощью стереолитографического принтера, печатающего фотополимерными смолами.

Музыкальные инструменты

3D-печатные музыкальные инструменты

3D-печатные музыкальные инструменты

Гитары? Флейты? Барабаны? Запросто. Сломали свой гобой – напечатайте новый. Конечно, профессиональные музыканты могут и поспорить: пластиковая гитара? Несерьезно. Но кто сказал, что весь инструмент должен быть из пластика? Тот же гриф можно распечатать из древесного полимера, схожего по плотности с натуральной древесиной. Можно даже напечатать композитный углеволоконный сердечник. А что касается просто художественного оформления любимого клавесина, здесь 3D-печать может творить чудеса. Была бы фантазия!

Обувь

Стильные кроссовки от Люка Фусаро

Стильные кроссовки от Люка Фусаро

Восьмикратный чемпион мира в беге на короткие дистанции Усейн Болт прославился своей любовью к золотым вещам. Сюда входят не только медали, но и машины и даже обувь. Во время своего контракта с известным производителем Puma Болт носил фирменные позолоченные кроссовки. А с недавних пор инженер и дизайнер Люк Фусаро взялся за разработку спортивной обуви, которая пришлась бы Усейну по душе. Ее отличительной чертой является золотистый цвет. Ах, да – а еще она предназначена для производства методом 3D-печати. Использование аддитивного производства имеет один важный бонус, а именно возможность производства обуви, точно подогнанной под размер и контуры ноги спортсмена. Производится такая обувь лазерным спеканием, хотя у этой технологии уже появился конкурент.

Препараты

3D-печать может облегчить изготовление смешанных препаратов и помочь с тестированием лекарств на живых тканях

3D-печать может облегчить изготовление смешанных препаратов и помочь с тестированием лекарств на живых тканях

3D-печать активно применяется исследовательскими компаниями не только для разработки методов построения и восстановления тканей, но и для испытаний и производства лекарственных препаратов, зачастую в комбинации с тканевой инженерией. Так, компания Organovo направляет свои усилия на создание искусственных тканей человеческой печени для проверки новых препаратов на токсичность без риска здоровью людей. Но и сами лекарства вполне можно печатать, связывая препараты гелевым материалом. На выходе получаем обычные с виду пилюли, но с комплексным содержанием препаратов, подогнанным под конкретного пациента.

Автомобили

Док Браун знакомится с 3D-печатью. Примерно такой реакции и следовало ожидать

Док Браун знакомится с 3D-печатью. Примерно такой реакции и следовало ожидать

Большинство автомобильных компонентов можно напечатать, но это нецелесообразно экономически, если речь идет о массовом производстве. А вот для прототипирования новых автомобилей 3D-печать подходит прекрасно. Как, впрочем, и для производства уникальных машин или компонентов. Например, можно печатать запасные части для мелкосерийных моделей, снятых с производства. Где еще вы найдете запчасти для, скажем, DeLorean, ставшего прототипом для машины времени из фильма «Назад в будущее»? Единственная небольшая компания, до сих пор производящая части для этого автомобиля, находится в Техасе. Доставка частей может обойтись дороже, чем сама машина, достаточно недорогая.

Кастомизация

Максимальный гламур с минимальными затратами

Максимальный гламур с минимальными затратами

Почему бы не взять готовое изделие и не добавить декоративные элементы? Превратите свой велосипед в произведение искусства всем на зависть. Позолоченные ажурные крепления на черном шасси заставят прохожих оглянуться. Но необязательно останавливаться на декоративном аспекте! Может быть, вас не устраивает сиденье? Почему бы не распечатать новое? Или добавить более удобные ручки? Клаксон в стиле 1910-х?

Мебель

Один из хитроумных дизайнов Йориса Лаармана

Игрушечная мебель? Нет, не только. Появление композитных материалов для FDM печати делает возможной печать «деревянной» мебели, практически не отличимой от настоящей. Собственно, в материале Laywoo-D3 не обошлось без настоящей древесины в виде микроопилок. Этот материал даже пахнет, как дерево! Готовые изделия легко поддаются механической обработке и лакировке.

Или Вам больше по душе металлическая мебель? Голландский дизайнер Йорис Лаарман создал собственную установку для 3D-печати металлом, без использования дорогостоящих порошков, вакуумных камер и лазеров. Устройство рисует металлом по воздуху, позволяя создавать элегантные переплетенные дизайны.

Ювелирные изделия

Красиво и функционально

Красиво и функционально

Наглядной демонстрацией точности 3D-печати является ее применение в ювелирном деле. Сразу стоит сказать, что далеко не все технологии подходят для этой задачи. Широко распространенные FDM принтеры привлекательны своей экономичностью, но по качеству печати не дотягивают до стандартов ювелирного производства. Наиболее популярным выбором является лазерная (SLA) и проекторная (DLP) стереолитография – установки, использующие эти технологии, позволяют печатать фотополимерные детали необыкновенной точности. Такие изделия используются в качестве мастер-моделей при создании ювелирных литейных форм, значительно упрощая процесс производства.

Но есть и вариант прямого аддитивного производства ювелирных изделий: технологии лазерного спекания и плавки позволяют создавать готовые изделия из металлического порошка, включая порошки драгоценных металлов. Правда, стоимость таких установок и материалов зачастую слишком высока для широкого применения даже ювелирами.

Строительство

3D-печать зданий поможет с жилищными проблемами

3D-печать зданий поможет с жилищными проблемами

Возможность использования 3D-принтеров для строительства зданий давно занимает умы инженеров по всему миру: американские военные всерьез рассматривают использование 3D-печати бетоном при развертывании баз, китайские специалисты же вовсю экспериментируют со строительством бетонных «коробочек». Правда, эти попытки пока достаточно примитивны, ведь настоящему дому потребуется и инфраструктура – дренаж, проводка… Весьма многообещающи попытки строительства полноценного дома Андреем Руденко. Андрей сконструировал собственный принтер, способный печатать коммерчески доступными цементными смесями. Причем, у него уже появились конкуренты. Так, компания BetAbram планирует выпустить в продажу принтеры для печати зданий площадью до 16х9м. Цена вопроса – около $44 000 для самой большой из трех моделей. Правда, «больше» – не обязательно «лучше». Испанские разработчики пытаются идти в направлении миниатюризации строительных 3D-принтеров, создавая роботы, способные использовать уже построенные элементы зданий в качестве рабочей опоры.

Какой метод станет наиболее практичным, покажет время. Но в случае успеха любого из них, строительная отрасль может сделать качественный рывок, выраженный в повышенной экономии, безопасности и скорости возведения зданий.

3D-принтеры

Что еще можно напечатать на 3D-принтере? Еще один 3D-принтер! Пусть пока и не целиком: необходимые электронные и электромеханические компоненты пока не подлежат печати, но это лишь вопрос времени. Почти все используемые материалы или близкие аналоги уже были опробованы различными методами аддитивного производства. Осталось лишь дождаться появления машин, способных использовать полный диапазон расходных материалов. Тогда проект RepRap, давший толчок развитию компактных самовоспроизводящихся 3D-принтеров, придет к логическому завершению.

Статья подготовлена для 3DToday.ru

3D принтеры: возможности и перспективы

3D принтеры возникли примерно 30 лет назад, хотя знакомиться с этими уникальными устройствами общественность стала совсем недавно. Дело в том, что ранее они были весьма медлительными и чрезвычайно дорогими, однако сегодня появились модели, которые могут позволить себе купить люди даже с небольшим доходом. Скорость работы усовершенствованных моделей также значительно возросла.
Как работают 3D принтеры? Чтобы воспроизвести что-либо, потребуется загрузить в агрегат геометрические параметры, созданные в специальных программах. Основываясь на этой информации, 3D-принтер создаст готовое изделие, стартуя с основания, и далее, послойно наращивая полный его объём.

3д принтеры

Потенциал современных устройств для 3D печати невероятно огромен. Сейчас даже весьма простенький домашний настольный принтер может выполнить модель из пластика, точность воспроизведения которой составляет 100 микрон. Другими словами, это будет полная копия оригинала, которую человек будет не способен отличить от прототипа.

3д-печать

Модели для трёхмерных принтеров могут создавать только профессионалы, и занимает этот процесс времени намного больше, чем сканирование документов на офисном ксероксе. Однако сейчас, в связи с бурным развитием коммуникаций, шаблоны теперь стали доступны каждому. Их можно найти на специальных сервисах в интернете, например, на Thingiverse.com, Cubify.com и других. Ещё одним достоинством при производстве с помощью 3D принтеров является сведение роли человеческого фактора почти к нулю, то есть каждое готовое изделие в точности будет повторять особенности оригинала.

3d-printer

Уже сейчас есть множество областей реального применения таких аппаратов:
1. Медицина. В первую очередь, уже довольно давно используется способ стереолитографии, чтобы получить индивидуальные зубные скобы на основе сканирования ротовой полости пациентов. Материалом служит полимер, безвредный для человека. Этот метод ортодонтии использует компания Align Technology. А Siemens изготавливает слуховые аппараты, которые идеально совместимы с ушными раковинами больных.

Bioprinter Holdout

2. Для изготовления трубок, используемых при производстве истребителей F-18 применяется печать на 3Д-принтерах.
Если ранние версии давали возможность напечатать лишь простые предметы, вроде шахматных фигур, то современный модели могут изготавливать весьма изощрённые формы, к примеру, можно, не прерывая процесса, сделать свисток, с находящимся внутри шариком, или любой другой предмет в предмете.

3d-принтер медицина

Некоторые делают на домашних принтерах печатные платы. Если задаться целью, то в интернете можно отыскать чертежи пластикового пистолета, который на самом деле будет стрелять боевыми патронами. Прочность пистолета позволяет выдержать несколько дюжин выстрелов. Кстати, скандал, связанный с такими пистолетами, дошёл недавно до Конгресса США.

3D-Пистолет

В США специалистами Корнельского университета была разработана технология печати гидроколлоидами, благодаря которой, в перспективе, появляется возможность печатать хлеб, овощи, молочные продукты, мясо и любые другие продукты, а может быть — даже готовые блюда. Некоторые футурологи считают, что уже через несколько десятков лет лежать на полках магазинов будут только картриджи с разными наполнителями для принтеров, а сами продукты будут изготавливаться дома.

3dпринтер

В действительности, первый биопринтер уже создан инженерами компании Invetech и медицинскими специалистами Organovo. Материалом для изделий в нём служат очень маленькие кластеры клеток, «сплавляемых» в одно целое по заданному шаблону.

3д-печать-человека

Уже существуют действительно удивительные факты с успешным применением 3Д принтеров. В 2006 году, в Северной Каролине была успешно реализована пересадка 7-ми пациентам искусственных мочевых пузырей, которые и по сей день бесперебойно выполняют свои функции.

MiiCraft

В зависимости от запросов пользователей 3D принтеров, сейчас можно купить устройства в разных ценовых категориях. Есть модели стоимостью 2-3 тысячи долларов, которые используют жидкие полимеры для производства изделий. Среди них B9Creator и MiiCraft. Аппараты отличаются типом применяемых полимеров, скоростью печати, точностью готовых моделей и размерами.
Если потратить несколько тысяч долларов на подобную игрушку нет возможности, есть совсем доступные варианты, которые печатают по технологии FDM. Цена на подобные устройства составляет менее 1 тыс. долларов, а в качестве сырья используется пластиковая нить.

Prusa Mendel I3

Такие модели просты в эксплуатации, а для удешевления стоимости, внешний вид их напоминает большую поделку, собранную из электромеханического конструктора.
К подобным моделям относятся Prusa Mendel I3 (500-1000 $), Tantillus (850 $).

Portabee

Интересен вариант Portabee (480 $) с размерами 360х300х96 мм, который очень быстро складывается и может транспортироваться в обычной сумке. MakiBox-A6 стоит 300 $.

Tantillus

Есть и другие модели, самым дешёвой среди которых на сегодняшний день является Simple Builder’s Kit, доступный любому желающему ознакомиться с возможностями 3D печати всего за 259 $.

Simple Builder’s Kit

Учитывая тенденцию, возможно, в самое ближайшее время 3Д принтеры станут таким же обязательным атрибутом в доме, как компьютер или телевизор.

Simple Builder’s Kit Загрузка…
руководство для начинающих / Блог компании Gearbest.com / ХабрАвтор этого поста увидел первую 3D-модель, распечатанную на принтере, около 10 лет назад. Шло собрание в огромном российском рекламном агентстве, которое использовало возможности 3D-печати для того, чтобы печатать демонстрации очень дорогой сувенирки — её предстояло сделать из меди, бронзы, серебра и совсем мелкие штучки из золота. Мы с коммерческим директором тогдашней компании крутили в руках будущие статуэтки и значки из буро-серо-синего пластика, с неаккуратными заусенцами, «провалами» и т.д. Нам это казалось восьмым чудом света — и, когда нам отдали макеты насовсем, мы радовались как дети и уже в машине шутили, что круто было бы печатать на принтере блинчики, пирожные и колбасу. Никогда мы ещё не были так близки к предсказанию будущего.


Когда хозяин купил 3D-принтер, а ты понял, как выглядит безысходность

Сегодня 3D-принтеры стали настолько доступными, что практически каждый может купить свой just for fun (и покупает — мы в Gearbest как никто об этом знаем), например, чтобы напечатать с ребёнком новогодние снежинки или игрушки, сделать макет для работы, самолётик для хобби или элементы для какого-нибудь невероятного DIY. Более того, нередко 3D-принтер занимает своё почётное место рядом с давно упокоившимся домашним принтером и хозяин иногда совестливо подумывает наконец что-то напечатать. Ну хотя бы Эйфелеву башню и Триумфальную арку для сестрёнки, увлечённой французским языком.

Такая популярность неудивительна — 3D-принтеры появляются едва ли не каждую неделю: доступные, с отличными расходниками, многофункциональные. И эта тенденция приведёт к одному: принтеры поселятся дома у всех как рабочий инструмент, помощник, игрушка, обучающий комплекс.


Очень ждём 3D-принтеры нового поколения

Теория, которая нужна, чтобы понять, какой он, ваш 3D-принтер


Хоть статья и для новичков, избежать терминов не получится — большой путь начинается с первого шага. Поэтому прежде всего нужно поинтересоваться, какая у 3D-принтера технология печати. Большинство принтеров любительского уровня используют технологию, которая называется «Fused Deposition Modeling» (FDM), она же «Fused Filament Fabrication» (FFF), она же «Plastic Jet Printing» (PJP). Технология печати проста и понятна: слои пластика (редко — другого материала) накладываются друг на друга и формируют ту фигуру, которую вы смоделировали. То есть изделие как бы складывается из множества горизонтальных сечений, сформированных из пластика, который экструдируется из горячего сопла (пластиковая нить плавится) и сразу после экструзии застывает.

Бывают ещё SLA-принтеры, в которых печать происходит за счёт того, что смола взаимодействует с лазером и затвердевает по мере создания фигуры. Такие принтеры печатают ультра точные и детализированные изделия.

Основной материал для любительско-DIY-домашней печати — цветной пластик, который чаще всего продаётся в виде нитей на катушках (редко — в коротких отрезках). Но, как мы помним из школьного курса химии, пластик тоже бывает разный и каждый вид материала имеет свои свойства прочности, хрупкости, прозрачности, пластичности и т.д. Чаще всего материал называют ABS-нить или PLA-нить. И это не просто аббревиатуры.

АБС-пластик довольно ударопрочен и долговечен, не ломается на сгибах. Он называется по первым буквам компонентов: акрилонитрил (до 35%), бутадиен (до 30%), стирол (до 60%). Это нетоксичный и безопасный материал, с которым можно работать в присутствии детей. Однако на открытом солнце и морозе пластик может потерять внешний вид.

PLA (полилактид) — крайне термопластичный полиэфир, который является более хрупким и менее «живучим», чем ABS. Абсолютно экологичен и биоразлагаем. ПЛА-пластик производят из кукурузы или сахарного тростника. Этот тип пластика отлично держит форму и имеет хорошее трение, поэтому, если вы собираете что-то из подвижных деталек, посмотрите на ПЛА.

Если разделить совсем грубо, то АБС больше для профессионалов, а ПЛА — для начинающих любителей.

Какие материалы ещё бывают?
  • Нержавейка — сплав из нержавеющей стали и бронзы. Очень крутой материал, но в любительских 3D-принтерах не используется.
  • Древесина — смесь переработанной древесины и полимера. Изделия из хорошей, дорогой нити такого плана выглядят как дерево и приятны в руках. Печать такой нитью не сложнее остальных.
  • Смола — дорогой материал с высокой степенью гладкости, точности, отличной текстурой. Изделия могут мутнеть от солнечного света.
  • Нейлон — популярный материал для 3D-печати, но чаще используется в промышленности и медицине.
Выбирая материалы, обратите внимание на размер катушки и диаметр нити — они должны соответствовать техническим требованиям вашего принтера.
  • Область печати — проще говоря, объём фигуры, который можно напечатать на 3D-принтере. Эта величина обычно указывается в кубических сантиметрах или в соотношении глубины, высоты и ширины в мм.
  • Скорость печати — важный параметр, который определяет, как быстро сопло отдаёт расплавленную нить (мм в секунду). Хорошей скорости радоваться стоит не всегда — иногда она идёт в ущерб разрешению печати. Также на скорость влияют материал печати и структура самой модели, которую вы пытаетесь изготовить.
  • Разрешение слоя — по сути, толщина слоя: высокое разрешение — тонкие слои, почти незаметный рельеф, гладкое изделие; низкое разрешение — грубая работа с более толстыми слоями. Часто 3D-принтеры предоставляют пользователю возможность выбрать разрешение.


Толщина слоя 50, 100 и 200 микрон — разница, конечно, есть
  • Экструдер — часть принтера, которая разогревает и отдаёт материал. Материал плавится в сопле и экструдируется из него (подаётся на печать). Кроме сопла экструдер включает механизм подачи нити, датчик температуры и систему охлаждения (в нормальных моделях). Если экструдер у принтера один, то печать довольно однообразна — одним цветом за раз. А вот два и более экструдеров позволяют сочетать цвета и материалы. Принтеры с двойным соплом на один экструдер встречаются редко, стоят дорого — в домашних условиях это избыточная возможность.
    При экструзии термопластичная нить экструдируется в виде расплавленного материала и этот самый материал откладывается по координатам X и Y, а сам объект «формируется» по координате Z (отсюда и 3D-печать).

  • Поддержка устройств памяти — принтеры могут поддерживать карты памяти, USB, смартфоны, устройства по Wi-Fi и т.д. Внешний ПК для 3D-печати нужен далеко не всегда.
  • Программное обеспечение для 3D-принтера обычно поставляется с самими оборудованием. Его основная задача — уметь открывать и обрабатывать файлы формата STL (используются для печати моделей и передачи некоторых параметров). Но не стоит забывать, что для 3D-моделирования вам понадобится специализированное ПО типа Sketchup, Autodesk Inventors Fusion и т.д. Именно эти программы помогут вам спроектировать модель и сгенерить STL-файл.


Autodesk Inventors Fusion
  • Опции — красивый дисплей, функциональные кнопки, распознавание материалов и т.д. — это уже дело вкуса и удобства, которое, тем не менее, влияет на цену.

Ну и отдельно нужно сказать о модели поставки, с которой вы непременно встретитесь даже в этой статье — понятие «Kit». Kit отличается от Assembled тем, что устройство пользователь должен собрать самостоятельно (DIY). Плюсов много: главный — удовольствие от сборки и возможность изучить принтер до винтика, второй — ощутимо сниженная цена за счёт компактной поставки, также за счёт того, что производителю не пришлось осуществить сборку и калибровку вашей 3D-машины.

Крепким принтером для новичков можно назвать Alfawise U20 — с одной стороны, он прост и доступен по цене ($299,99, а с купоном GBAlfawiseU20 $279.99 — всего 50 купонов), с другой — имеет всё для того, чтобы хозяин ощутил себя почти профессионалом. Что мы получаем от этой модели: рабочая зона 300 х 300 х 400 мм (этого достаточно для большинства любительских запросов и для части инженерных), прочную алюминиевую раму, экструдер с одним соплом 0,4 мм и возможностью греться до 250 градусов (а это уже выбор материала!), поддержку карту памяти, удобный LCD-экранчик, скорость печати от 20 до 150 мм/с, поддержку ABS, PLA, TPU (износостойкий гибкий материал на основе полиуретана). Весит принтер 12 кг, место на столе займёт. И да, это тот самый DIY Kit, то есть вам предстоит самостоятельно собрать машину (не без удовольствия!).


Ещё одна модель, ставшая буквально классикой начинающего в сфере 3D-печати, это принтер Anet A8 (цена $145.99). Это проверенный опытом многих пользователей принтер, надёжный как автомат Калашникова и такой же простой. Что имеем: рабочий объём 220 х 220 х 240 мм (это не очень много), поддержку кучи материалов, включая «дерево», нейлон и светящиеся нити, поддержку SD-карт, скорость печати 100 мм/с и очень скромный, но информативный LCD-дисплей. Хорошая милая Anet тем, что по ней можно найти практически любую информацию и любой опыт пользователей. Популярность модели играет ей на руку (или что там у неё…).


Для сравнения приведём дорогой 3D-принтер — Creality3D CR-Х, на него сейчас идёт предзаказ по $789,99. И он действительно отличается от перечисленных моделей. Прежде всего, это большое рабочее пространство 300 х 300 х 400 мм, разрешение 50-400 микрон, 4,3′ тачскрин. Ну и главная фишка — поддержка печати двумя цветами за счёт двойного экструдера и работа с PETG — ударопрочным материалом практически без запаха и без усадки. Принтер поставляется с набором инструментов, имеет силиконизированную рабочую платформу (шансов получить ожог почти ноль) и двойную систему охлаждения. Как видите, разница очевидна.


Кстати, в мире 3D существую МФУ, как и в мире печатных принтеров. Как правило, 3D-МФУ включают камеры для удалённого мониторинга печати, обычные принтеры, сканеры и многое другое.

С чем нужно обязательно определиться перед тем, как заказать свой 3D-принтер?


Можно купить лишний мобильник «на посмотреть, чё за оболочка», пару внешних дисков, наушники из любопытства и даже второй видеорегистратор, но купить 3D-принтер с бухты-барахты — история сомнительная: он большой, займёт много места, стоит нормальных денег и вообще требует ответственного подхода и осознания, что к нему будут нужны километры расходников (к счастью, в основном, недорогих). Тут почти как с котом — берёшь раз и навсегда. Но не потому что трудно перепродать в случае чего, а потому что душой прикипаешь.Ваш дом наполнится милотой и забавными фигурками

Итак, с чем нужно определиться.

  • Бюджет. 3D-принтеры стоят от 150$ до нескольких тысяч долларов. Соответственно, определитесь с тем, сколько вы готовы потратить, какой объём расходников придётся закупить. Выбирайте принтер по своим целям, но не стремитесь сэкономить любой ценой — если вы решили подойти к 3D-печати всерьёз, в недорогой модели вм может не хватить каких-то важных функций.
  • Ваши проекты. Что вы будете делать? Насколько загружен будет ваш принтер (например, одно дело — редкие поделки для школы или кружков, другое — обслуживание производства хенд-мейд подарков и вещиц для заработка)? Какие материалы вам понадобятся?
  • Необходимые материалы и их свойства — приценитесь к материалам и расходникам, составьте список и вычислите объём нитей, которые вам понадобятся. Если ваш проект предполагает какую-то коммерческую составляющую, учитывайте тот факт, что доставка материалов займёт какое-то время. Обязательно проверьте, поддерживает ли выбранный принтер необходимые типы пластика.
  • Многоцветная печать — если вам необходимо несколько цветов, вам нужен принтер с несколькими экструдерами, а это уже другая ценовая категория.
  • Цели печати, как правило определяют размер необходимого вам принтера. Если вы собираетесь просто «побаловаться» или приобретаете игрушку для ребёнка, то лучше не заморачиваться и выбрать компактный принтер с небольшим рабочим объёмом. Этого будет вполне достаточно для just for fun.

Например, есть очень симпатичная модель Alfawise X6A. Во-первых, он стильный и выглядит несколько лучше привычных «скелетиков», во-вторых, у него очень компактная рабочая область — 220 х 220 х 220 мм. При этом он открыт для любых экспериментов и поддерживает материалы ABS, HIPS, PC, PLA, PVC, Wood, имеет скорость печати от 20 до 150 мм, неплохое разрешение печати от 0,06 до 0,4 мм, поддерживает SD и USB, оснащён отличным рабочим дисплеем. И при этом его полные габариты 41,5 х 40,8 х 44,5 см — то есть просто займёт угол на рабочем столе. Это реально компактная домашняя модель. И стоит всего $289.99 (с купоном GBX6A — $285,99).


  • Место для принтера — чаще всего это рабочий стол или любая устойчивая поверхность. Однако мы бы рекомендовали не выбирать полностью закупоренные помещения (если это квартира, а не гараж). Дело в том, что работа с горячим пластиком предполагает определённый запах (интенсивность зависит от материала) и помещение нужно обязательно проветривать.
  • Ваш опыт работы с 3D-печатью определит время от включения в сеть до первого результата в ваших руках (это непередаваемое ощущение — держать первую сделанную фигурку!). Вам нужно освоиться с техникой, с соответствующим программным обеспечением, с картами памяти, работой с ПК и т.д. Впрочем, у современного человека такие задачи — дело весьма короткого времени.
  • Кто ещё будет пользоваться 3D-принтером. Если к вам присоединиться ваш ровесник (брат, сестра, друг, коллега), то это одно дело и можно разделять ответственность за состояние и работу принтера. Если это будет ваш любопытный подросток, то лучше работать с принтером совместно, а модель выбирать устойчивее и надёжнее.
  • Будьте готовы обрабатывать модели. Увы, нет в мире совершенства (хотя нам таким кажется TEVO Little Monster Delta 3D Printer DIY Kit — только посмотрите на этот дизайн!) и вам придётся поработать напильником маникюрными ножницами и ножами разных мастей, чтобы довести фигурку до совершенства. С готовых изделий нередко приходится снимать лишние нити, наплывы, выступы и т.д.

Для первого уровня пользователя 3D-принтера эта информация окажется по-настоящему полезной, гораздо полезнее многочисленных видео с «магией» печати. Дело в том, что сам принтер всего лишь инструмент и основную магию творите вы — своей фантазией, умением, вкусом. Но что процесс захватывающий — это факт. Даже если модели из Интернета, даже если материал самый недорогой, а принтер не навороченный. Потому что природа креатина творит с каждым из нас чудеса.

Если у вас есть особые советы, которые могут дополнить статью, пожалуйста, пишите в комментариях — как показывает опыт Хабра, комментарии зачастую дают +500 к полезности публикации. Давайте разбираться в дебрях 3D-печати вместе!



Ещё несколько моделей, которые нам очень нравятся:
  • Alfawise U20 — $299.99 ($279.99 c купоном GB-$20OFF) — поддержка многих материалов нити, экран, скорость 20 — 150 мм/с.
  • Alfawise U10 — $439.99 ($429.99 c купоном GBU10EU) — большой рабочий объём, 4 материала, скорость печати 10 -150 мм/с, высокая точность
  • Anet E12 — $279,99 ($269.99 c купоном GBE12) — высокое разрешение, 3 материала нити, скорость печати 40-120 мм/с, та же неубиваемая модель Anet, но с большой рабочей областью
  • Creality3D CR-10 — $ 389.99 — очень быстро собирается DIY Kit, отличная детализация печати
  • Creality3D CR-10S4 — $599,99 ($559.99 c купоном CR10S4) — огромный объём рабочей области (400 х 400 х 400 мм)!
  • Очень популярный у наших пользователей принтер — сейчас цена вообще сказка — $175.99
  • Мегакрутой фотополимерный 3D принтер Flyingbear Shine (DLP UV Resin) — по купону GBFlyingbear предоставляется небольшая скидка $10. Итоговая цена $569.99 с учетом бесплатной доставки (т.к. до 10 кг). И да, для фотополимерного принтера это реально низкая цена.
  • Небольшой фотополимерный малыш для начинающих — на него мы приготовили купон GBSparkMaker и цена со скидкой по купону составит $259.99.
  • DLP принтер — с купоном GBLD001 цена $569.99.
  • Alfawise U10 3D Printer — с огромной областью печати 40 x 40 x 50 см. Сейчас идёт со скидкой 25%%, итого за $419.99
Как работает 3D принтер: объяснение на простых примерах

 
3D-печать распространена повсеместно. Она позволяет создать что угодно — от прототипов всевозможных изделий, до функциональных частей реактивных двигателей самолетов и космических аппаратов, от канцелярских принадлежностей и автозапчастей, до шоколадок и сувениров.

 

 

Но, как именно работают 3D-принтеры, как они создают трехмерные объекты любой возможной формы — знают еще не все. Если вы хоть раз задавались этими вопросами, то перед вами — самое простое объяснение 3D-печати.

 

Общие принципы 3D-печати


Принцип 3D-печати по любой существующей технологии — создание объемных объектов из совокупности плоских слоев.

Цифровая модель изделия разделяется на слои специальной программой — слайсером, а принтер печатает эти слои, один на другом, составляя из них трехмерный объект. Так, из множества слоев, получается объемная деталь.

Общий принцип один, но технологии различаются; самая распространенная и доступная среди них — FDM.

FDM

Моделирование методом послойного наплавления (FDM), также известное как производство способом наплавления нитей (FFF) — самый популярный и массовый тип 3D-печати.

 


Стандартное FDM-устройство работает как термоклеевой пистолет управляемый роботом, что не удивляет, ведь разработка технологии FDM когда-то начиналась с опытов с термоклеем. Пластиковый пруток проталкивается через горячее сопло, где он плавится, а выходя из него укладывается слоями. Процесс повторяется снова и снова, пока не появится готовый 3D-объект.



 

Единственное отличие в том, что 3D-принтеры используют не стержни термоклея, а пластиковый филамент намотанный на катушки.

 

 

Самые распространенные материалы для FDM (FFF) — пластики ABS и PLA.
 

Пластиковая нить, она же филамент, выпускается в такой форме для того, чтобы она могла легко плавиться при заданной температуре, но очень быстро застывать — после охлаждения всего на пару градусов. Именно это и позволяет печатать 3D изделия со сложной геометрией с высокой точностью.
 


Проще говоря, 3D-печать отличается от традиционной 2D-печати только тем, что повторяется снова и снова, создавая слой за слоем, один на поверхности другого. В конце концов, тысячи слоев образуют 3D-объект.
 

 
FDM-принтер на примере MakerBot Replicator 2


 
Стереолитография

 

Стереолитография использует свет для “выращивания” объектов в емкости с фотополимерной смолой. Как и в прочих технологиях 3D-печати, изделие образуется слой за слоем, здесь — при отверждении жидкого фотополимера светом.


От FDM стереолитография отличается более монолитными принтами, даже с одинаковой заданной толщиной слоя.

 


 

На фото: принты FDM и SLA, слой обеих моделей — 0,1 мм.

 

 

Дело в разнице в технологиях — фотополимерная засветка дает более аккуратные слои, чем расплавленный филамент выдавливаемый из сопла FDM-принтера.

 

SLA и DLP — две разновидности стереолитографии. SLA — лазерная стереолитография, DLP — цифровая проекция. Различие между ними в том, что в SLA источником света служит лазер, а в DLP — проектор.

Независимо от технических особенностей, принцип работы устройств SLA и DLP схож. Для запуска печати необходимо опустить специальную платформу построения в емкость с жидкой фотополимерной смолой.

Платформа останавливается на высоте одного слоя от дна емкости.
Происходит засветка источником света принтера.
Жидкий полимер, под воздействием света, становится твердым и прилипает к платформе построения. После этого платформа поднимается на высоту еще одного слоя и процесс повторяется.

   

SLA-принтер на примере Formlabs Form 2

 


SLA дает более гладкие поверхности, по сравнению не только с FDM, но и с DLP, о которой рассказываем далее.

 

 

Так получается потому, что DLP проецирует слои картинкой из пикселей, а луч лазера в SLA движется непрерывно, что дает ровный, не пикселизованный слой.


DLP в тех же целях использует проектор, а LED DLP — ЖК-дисплей с ультрафиолетовой подсветкой. В этих конструкциях свет проецируется на смолу по всей площади слоя одновременно, что дает преимущество в скорости, когда необходима печать крупных объектов с заполнением в 100% — полная засветка слоя происходит быстрее, чем в SLA.

Но при печати мелких или пустотелых объектов SLA быстрее, так как интенсивность засветки лазерным лучом, а значит и скорость полимеризации, выше.

 

DLP-принтер на примере SprintRay MoonRay S

 

 

SLS

Главное преимущество технологии перед FDM и SLA — SLS-печать не требует создания поддерживающих структур, ведь материалом поддержки служит окружающий модель материал — это позволяет печатать изделия любой формы, с любым количеством внутренних полостей, и заполнять ими весь рабочий объем принтера. SLS-принтеры работают с широким спектром материалов, а их принты прочнее, чем большинство напечатанных FDM или стереолитографией.

 


Благодаря прочностным характеристикам, напечатанные на SLS-принтерах детали могут использоваться в практических целях, а не только как прототипы и декоративные элементы.

 

Для создания объекта аппарат направляет лазер на слой мелкофракционного порошка, сплавляя частицы друг с другом для формирования слоя изделия. Затем, устройство рассыпает следующую порцию порошка на поверхность готового слоя и разравнивает его, а лазер расплавляет, создавая следующий слой изделия. Процедура повторяется до тех пор, пока печать не будет завершена.

Есть у SLS-принтеров и минус — их стоимость. Они очень дороги, по сравнению с FDM и SLA/DLP. Это связано с ценой необходимых для такой печати высокоэнергетических лазеров. В принципе, стоимость даже самых дешевых SLS-принтеров совсем недавно начиналась от $200 000.

Тем не менее, некоторые компании в настоящее время работают над тем, чтобы сделать данную технологию более доступной, поэтому есть шанс, что приобрести SLS-принтер в ближайшем будущем смогут позволить себе даже любители. Один из примеров — польская компания Sinterit.

 

SLS-принтер на примере Sinterit Lisa Pro

 

 

Извлеченная из SLS-принтера модель не требует удаления поддержек и может использоваться без постобработки, ее надо лишь очистить от лишнего порошка.

 

Polyjet


Главное преимущество технологии Polyjet в ее мультиматериальности — многие Polyjet-принтеры способны печатать объект большим количеством различных материалов одновременно, что позволяет создавать изделия состоящие из участков с разными механическими и оптическими свойствами, то есть — разной твердости и цвета. Это фирменная технология компании Stratasys.

 

Пример: принтер Stratasys и напечатанные на нем кроссовки.
 

 

Polyjet 3D-принтеры распыляют крошечные капельки фотополимерной смолы на поверхность и полимеризуют их ультрафиолетовым излучением.

 

 
Этот процесс повторяется до тех пор, пока не будет создан объект. В отличие от FDM-принтеров, Polyjet-устройства могут наносить материал из многочисленных сопел одновременно.

 

Polyjet-принтер на примере Stratasys J750
 

 

Заключение

Прочитав эту статью, вы ознакомились с принципами и примерами работы 3D-принтеров функционирующих по самым распространенным технологиям.

Существуют и другие технологии, в основном — связанные с 3D-печатью металлами, но они используются только в промышленности. О них мы поговорим отдельно.

 

Чтобы выбрать 3D-печатное оборудование и материалы для любых задач обращайтесь в Top 3D Shop — проконсультируем, подберем максимально подходящую технику и расходники, оформим заказ, доставим, установим и научим.

Узнайте больше о возможностях усовершенствовать ваше производство интеграцией нового оборудования:

Что такое 3D-принтер и как он работает, что можно напечатать на 3D-принтере

Что такое 3д принтер? 3D-принтер - это устройство, использующее метод послойного создания физического объекта по цифровой 3D модели

3D–принтер — это технология, которая позволяет создавать реальные объекты из цифровой модели. Всё началось в 80-х годах под названием «быстрое прототипирование», что и было целью технологии: создать прототип быстрее и дешевле. С тех пор многое изменилось, и сегодня 3D-принтеры позволяют создавать всё, что вы можете себе представить.

Оглавление:

3D-принтер позволяет создавать объекты, которые практически идентичны их виртуальным моделям. Именно поэтому сфера применения данных технологий так широка.

Что такое 3D-печать?

3D-печать — это процесс аддитивного производства, потому что, в отличие от традиционного субтрактивного производства, трехмерная печать не удаляет материал, а добавляет его, слой за слоем — то есть выстраивает или выращивает.

  1. На первом этапе печати данные из чертежа или 3D–модели считываются принтером.
  2. Далее идет последовательное наложение слоев.
  3. Эти слои, состоящие из листового материала, жидкости или порошка соединяются друг с другом, превращаясь в окончательную форму.

При производстве ограниченного количества деталей 3D-печать будет быстрее и обойдет дешевле. Мир 3D-печати не стоит на месте и поэтому на рынке появляется все больше различных технологий, конкурирующих между собой. Разница их заключается в самом процессе печати. Одни технологии создают слои путем размягчения или плавления материала, затем они обеспечивают послойное нанесение этого самого материала. Другие технологии предусматривают использование жидких материалов, обретающих в процессе твердую форму под воздействие разнообразных факторов.

Для того, чтобы что-то напечатать, сначала вам понадобится 3D-модель объекта, который вы можете создать в программе 3D-моделирования (CAD — Computer Aided Design), или использовать 3D-сканер для сканирования объекта, который вы хотите печатать. Есть также более простые варианты, такие как поиск моделей в Интернете, которые были созданы и доступны другим людям.

После того, как ваш проект готов, все, что вам нужно сделать, это импортировать его в Слайсер, программа которая адаптирует модель в коды и инструкции для 3D–принтера, большинство программ с открытым исходным кодом и распространяются бесплатно. Слайсер преобразует ваш проект в файл gcode, готовый к печати как физический объект. Просто сохраните файл на прилагаемой SD-карте и вставьте его в свой 3D–принтер и нажмите печать.

На весь процесс может уйти нескольких часов, а иногда и несколько дней. Все зависит от размера, материала и сложности модели. Некоторые 3D-принтеры используют два различных материала. Один из них является частью самой модели, другой выступает в роли подпорки, которая поддерживает части модели, нависающие в воздухе. Второй материал в дальнейшем удаляется.

Как работает 3D-принтер?

Хотя существует несколько технологий 3D-печати, большинство из них создают объект, наращивая множество последовательных тонких слоев материала. Обычно настольные 3D-принтеры используют пластиковые нити (1), которые подаются в принтер податчиком (2). Нить плавится в печатающей головке (3), которая выдавливает материал на платформу (4), создавая объект слой за слоем. Как только принтер начнет печатать, все, что вам нужно делать, это подождать — это просто.

Конечно, когда вы станете продвинутым пользователем, игра с настройками и настройкой вашего принтера может привести к еще лучшему результату.

Чтобы узнать больше о том, как работает 3D-печать, читайте: Техподдержка и Новости 3D-печати

Что можно напечатать на 3D-принтере?

Возможности 3D-принтеров безграничны, и теперь они становятся обычным инструментом в таких областях, как инженерия, промышленный дизайн, производство и архитектура. Вот некоторые типичные примеры использования:

Печать обуви на 3д принтере

Персонализированные (Custom) модели

Создавайте персонализированные продукты, которые полностью соответствуют вашим потребностям с точки зрения размера и формы. Сделайте что-то, что было бы невозможно с помощью любых других технологий.

3д печать радиоуправляемых моделей

Быстрое прототипирование

Трехмерная печать позволяет быстро создать модель или прототип, помогая инженерам, дизайнерам и компаниям получить обратную связь по своим проектам за короткое время.

3д печать сложных объектов

Сложная геометрия

Модели, которые трудно даже представить, могут быть легко созданы на 3D-принтере. Эти модели хороши для обучения других по сложной геометрии интересным и полезным способом.

Серийное производство на 3д принтере

Снижение затрат

Стоимость деталей и прототипов конечного использования 3D-печати низкая благодаря используемым материалам и технологии. Сокращается время производства и расход материала, так как вы можете многократно печатать модели, используя только необходимый материал.

Как выбрать и купить 3D-принтер? →

как перестать бояться и начать печатать

Технологии 3D-печати, еще несколько лет назад казавшиеся дорогими и недоступными, с каждым днем становятся все ближе к нам. Сейчас на рынке представлено большое количество моделей 3D-принтеров, простых в управлении и доступных по цене. Выбрать 3D-принтер для начинающих теперь стало гораздо проще.

Источник: https://www.brooklinelibrary.org

Присутствуют даже модели, которыми могут пользоваться дети. Как начать печатать 3D-модели с нуля? Мы расскажем об этом подробно.

Суть технологии 3D-печати

3D-печать – это технология, при которой 3D-принтер создает материальный трехмерный объект по компьютерной модели, разработанной в программе 3D-моделирования или на основе 3D-скана. 3D-принтер – это устройство с программным управлением, которое использует данные компьютерной трехмерной модели для послойного создания физического объекта.

Источник: https://www.solvay.com

Существует много распространенных и хорошо себя зарекомендовавших технологий 3D-печати, и специалисты продолжают работать над их усовершенствованием. Однако лидерство прочно удерживают несколько наиболее удобных в применении технологий – это FDM (fused deposition modeling – моделирование методом наплавления) и стереолитография — SLA (laser stereolithography – лазерная стереолитография) и ее аналог DLP.

Как начать печатать в 3D быстро и легко

Итак, вы решили приобрести 3D-принтер – с чего начать? Прежде всего нужно  разобраться в их видах. Принтеры различаются технологиями, по которым они работают – FDM, SLA или DLP, и техническими параметрами. Разберем, какие характеристики имеют эти устройства и на что нужно ориентироваться, выбирая принтер для начала печати.

Источник: https://www.digitaltrends.com

Характеристики 3D-принтера

Присматриваясь к FDM-моделям принтеров, кроме цены, обращайте вни

Возможности принтера

Перед выполнением печати с помощью Xerox Nuvera, найдите время, чтобы узнать о его возможностях и возможностях.

Разрешение принтера

4800 x 600 точек на дюйм

RIP Резолюции

600×600 точек на дюйм

1200×600 точек на дюйм

1200×1200 точек на дюйм

Тип двигателя печати

Ксерографический монохромный (черно-белый) только

Скорость принтера

100/120 копировальных принтеров 100/120/144 цифровых систем производства страниц в минуту в одностороннем режиме (односторонняя страница), на A4 (Letter) акции.Чуть меньше с большими размерами бумаги. Увидеть ниже.

ксерография с переменным шагом для максимальной пропускной способности

Xerox Nuvera оснащен ксерографическим поясом с переменным шагом. Шаг относится к числу изображений страниц, которые могут быть размещены на поясе, которые затем передаются на бумаге. Подробнее о том, как размер изображения страницы влияет на шаг ремня, который в свою очередь влияет на общую пропускную способность, см. О Подача.

Поддерживаемые размеры бумаги

Минимальный размер: A5 / 5.5 дюймов х 8,5 дюймов

Максимальный размер: 12,2 дюйма x 18,5 дюйма

Подробнее о поддерживаемых документах см.

Поддерживаемая бумага

Рекомендации по использованию бумаги

Ожидаемая производительность при обработке и копировании бумаги

раз прогрева машины

С холодного старта (например, первым делом с утра): от 4,5 до 7 минут

Из режима энергосбережения: 3,5 минуты

От перезагрузки системы: от 4 до 5 минут

Возможности контроллера

Для получения более подробной информации о конфигурации системы, в строке меню выберите Настройка: Конфигурация системы.

Копир Принтер

Системный процессор

: 2,0 ГГц, 64 бит

Экран монитора: 15-дюймовый плоский цветной ЖК-монитор с клавиатурой и мышь

Цифровая производственная система

Системный процессор

: 2,2 ГГц, 64 бит

Экран монитора: 15-дюймовый плоский цветной ЖК-монитор с клавиатурой и мышь

Nuvera Copier Printer и Цифровая производственная система

Съемные устройства хранения: CD-RW / DVD ROM

Тип разъема Ethernet: 10/100/1000 BaseT

PDL (язык описания принтера) Поддержка:

  • PostScript Уровень 3
  • л.с. / PCL 5e и PCL 6
  • TIFF
  • Многостраничный TIFF
  • Adobe PDF
  • ASCII

Поддерживаемые сетевые протоколы:

  • TCP / IP
  • LPR
  • IPP
  • HTTP
  • AppleTalk
  • Novell (SPX-IPX)
  • SNMP

Поддерживаемые клиентские среды:

  • Windows 95/98 / M3, NT 4.0, XP
  • Macintosh OS 8 +
  • Solaris 2.6, 7.x, 8.x
  • Linux 2.x

Подробнее о печати с клиента см. Печать с вашего ПК.

,
Bis Сертифицированный Супер Дешевый Принтер Wd-80k USB-Термопринтер Bluetooth С Фабрики

Сертифицированный BIS Супер дешевый принтер WD-80K USB Bluetooth Термопринтер с завода

Описание продукта

Основная информация и основные характеристики:
Название товара: Bill Printer
Номер товара: WD-80K
Подходит для всех типов принтеров коммерческие розничные POS-системы, ресторанная система, промышленные системы управления;
Легкий вес и элегантная форма
Высококачественная печать и низкая стоимость
Низкий уровень шума и высокая скорость печати
Поддержка драйвера кассового лотка
Простота установки на бумаге, Простое обслуживание и отличная структура
Низкое энергопотребление и низкие эксплуатационные расходы (нет Ленты или чернильные картриджи)
Встроенные буферы данных (возможность принимать данные печати во время печати)
Символы можно усиливать, при желании печатать жирным шрифтом и настраивать межстрочный интервал
Поддержка растровой графики различной плотности Печать
Поддержка NV изображения загрузка и печать
Высокоскоростная печать с использованием встроенного мягкого шрифта для всех интерфейсов
Совместимость с набором команд печати ESC / POS, дополнительными столбцами и шрифтом (настраивается с помощью DIP-переключателя)

Параметр:

Печать Метод

Термопечать
Печать символа 576 точек / линия или 512dot / Line; Символ АНК
— шрифт A: 12 * 24 точки, 1.5 (Ш) * 3,0 (В) мм
— Шрифт B: 9 * 17 точек, 1,1 (Ш) * 2,1 (В) мм
— Упрощенный / Традиционный: 24 * 24 точки, 3,0 (Ш) * 3,0 (В) мм
Тип штрих-кода UPC-A / UPC-E / JAN13 (EAN13) / JAN8 (EAN8), 2D QR-код
CODABAR / ITF / CODE39 / CODE93 / CODE128
Скорость печати 300 мм / с
Тип интерфейса Параллельный / последовательный / USB / Ethernet / Bluetooth
Команда печати Совместимость с ESC / POS
Ширина бумаги 79.5 ± 0,5 мм (ширина печати 72 мм)
Диаметр печати 83 мм
Мощность DC 24 В / 2,5A
Автоматический резак Полная или частичная резка
Надежность 100 км
Вес 1,60 кг
Температура 0-45 ℃
Контрастность Влажность 10-80%
Драйвер Win 9X, Win 2000, Win 2003, Win XP, Win Vista, Win 7
, Linux, совместимый с EPSON, SAMSUNG
Размер 195 * 155 * 148 мм

Фотографии:

000000 Упаковка:

Оплата и доставка

Свяжитесь с нами

Информация о компании

WODE INDUSTRY COMPANY LIMITED,

Профессиональный производитель и поставщик кассовых терминалов, термопринтеров, кассовых чеков, оборудования для сбора данных и сканирования штрих-кодов, принтер штрих-кодов и другие POS-устройства в течение многих лет.

Поскольку мы уважаем репутацию, которую вы создали на своем рынке, мы обеспечим качество каждого продукта. Если у вас есть какие-либо вопросы, пожалуйста, дайте нам знать. Мы сделаем все возможное, чтобы поддержать вас. Мы к вашим услугам в любое время.

Наши услуги

Сертификат качества: CE, FCC, RoHS


Гарантия: Трехлетняя гарантия
1. В течение одного месяца вы получаете товар, если возникают проблемы, мы помогаем вам выяснить проблемы и отправить вам запчасти свободно для замены.
стоимость доставки запчастей оплачивается нами. а также отправить вам видео, чтобы показать вам, как заменить детали.

2. от одного месяца до одного года, если возникнут проблемы, мы поможем вам найти проблемы и бесплатно отправим вам запчасти для замены,
стоимость доставки запчастей оплачивается вами, и мы также отправим вам видео для показа как заменить детали.

3. От одного года до трех лет, если возникают какие-либо проблемы, мы помогаем вам выяснить проблемы и взимаем только материальную стоимость деталей, а стоимость доставки деталей оплачивается вами, и мы также отправляем вам видео чтобы показать вам, как заменить детали.

Мы также бесплатно предоставим нашим клиентам некоторые компоненты в качестве резерва для поддержки нашего долгосрочного делового партнера.

FAQ

1. У вас есть товары на складе?

Да, у нас большой запас. Мы можем отправить товар в течение 3 дней после оплаты. Для товара нет в наличии, срок изготовления составляет около 7-10 дней.
2. Можно настроить в соответствии с требованиями клиентов?
Да, мы предоставляем услуги OEM
3. Можете ли вы перечислить продукты вашей компании?
Pos-система, бис-сертифицированный супер дешевый принтер, сканер штрих-кода, денежный ящик, принтер штрих-кода, КПК, сенсорный монитор, дисплей покупателя…
4. как насчет минимального количества заказа?
Нет MOQ, 1 штука в наличии.

5. Как мы контролируем качество?
Во-первых, каждая часть продукции строго проверяется в соответствии с сертификацией системы качества перед производством. Во-вторых, мы сделаем 100% проверку качества перед отправкой. В-третьих, добро пожаловать третьим лицам для проверки продукта.

6. Почему выбирают нас?

Мы придерживаемся принципа «Честность, инновации, побеждаем вместе» как культура компании, и наши собственные профессиональные материальные и производственные фабрики, наши команды по исследованиям и разработкам, производству, управлению, продажам и сервисному обслуживанию будут стараться поставлять нашим клиентам продукцию наилучшего качества и по конкурентоспособной цене. уважаемые клиенты.

,
Подключение беспроводного принтера HP | Центр беспроводной печати

HP Auto Wireless Connect — HP Auto Wireless Connect — это технология, которая позволяет автоматически подключать принтер к беспроводной сети без необходимости подключения каких-либо кабелей или ввода параметров беспроводной сети, таких как имя сети или пароль. Многие новые принтеры HP будут иметь эту возможность во время стандартного процесса установки программного обеспечения.

Чтобы использовать эту опцию, установите программное обеспечение для вашего принтера и следуйте инструкциям на экране.При появлении запроса выберите тип подключения «Сеть (Ethernet / Беспроводная связь)», а затем выберите «Да, отправить настройки беспроводной сети на принтер (рекомендуется)». Это оно! Программное обеспечение HP сделает все остальное.

Не все компьютеры или конфигурации сети совместимы с HP Auto Wireless Connect. В этих случаях будет предложен альтернативный метод настройки беспроводной сети. Для совместимости с HP Auto Wireless Connect должны быть выполнены следующие условия:

  1. Ваш компьютер использует Windows Vista (и новее) и Mac OS X 10.5 (и новее).
  2. Ваш компьютер использует беспроводное соединение с вашей сетью, а операционная система контролирует беспроводной адаптер, чтобы программное обеспечение HP могло получать текущие сетевые настройки компьютера.
  3. Ваш компьютер подключен к сети более 2,4 ГГц. ПРИМЕЧАНИЕ. Принтеры HP несовместимы с сетями 5,0 ГГц. Возможно, вы все еще сможете подключить принтер к сети, используя другие способы настройки, если ваш маршрутизатор также поддерживает 2.4 ГГц (как и большинство). Пожалуйста, перейдите в раздел, посвященный маршрутизаторам, чтобы узнать больше. Дополнительные способы настройки показаны на этой странице
  4. Ваш компьютер не использует статический IP-адрес
  5. Ваш принтер находится в режиме HP Auto Wireless Connect. Принтер будет в этом режиме в течение двух часов после первого включения питания во время установки, прежде чем он будет подключен к сети. СОВЕТ: Если ваш принтер был включен более двух часов и программное обеспечение еще не пыталось подключить принтер к беспроводной сети, вы можете сбросить этот режим с помощью «Восстановить сетевые настройки» или «Восстановить сетевые настройки по умолчанию». »С панели управления принтера.Обычно находится в меню «Сеть» или, коснувшись значка беспроводной сети (или кнопки), а затем перейдя в «Настройки» или значок шестеренки. Обратитесь к документации вашего принтера для получения дополнительной информации об этом.

Другие экологические и технические факторы также могут влиять на то, предлагается ли HP Auto Wireless Connect.

Если HP Auto Wireless Connect предлагается во время установки принтера, это рекомендуемый метод установки. Часть процесса установки требует, чтобы ваш компьютер был временно отключен от беспроводной сети.В течение этого времени у вас не будет доступа в Интернет. Обязательно сохраните все онлайн-работы и / или загрузки, прежде чем продолжить этот метод настройки.

Если HP Auto Wireless Connect не предлагается во время установки программного обеспечения или если она не удалась, вам будет предложено использовать другой метод настройки беспроводной сети.

,

Купить Epson 900wd (900) Принтер | Оптовая цена

Описание продукта

Благодаря регулируемому наклоном 2,5-дюймовому ЖК-монитору и встроенному интерактивному интерфейсу, вы получаете еще больший комфорт при просмотре и простоту использования с Epson ME Office 900WD. Максимально используйте чернильные картриджи при замене только пустых картриджей. Наслаждайтесь большей экономией с экономичными картриджами Epson от Epson. Чернила Epson DURABrite Ultra, универсальные чернила для повседневной печати, обеспечивают долговечность ярких отпечатков.Превосходное качество печати теперь возможно благодаря этим пятнам, выцветшим и водостойким чернилам.

Печать
Система чернил 4-цветная
Тип чернил Epson DURABrite Ultra Ink
Макс. Разрешение печати 5760×1440 точек на дюйм (с технологией капель переменного размера)
Мин. Размер капли чернил 4 pl
Скорость печати Черная текстовая заметка (A4) — прибл.34 стр. / Мин (черновик), цветная текстовая заметка (A4) — прибл. 15 ppm (Черновик) и Фото 10 x 15 см / 4 x 6 дюймов — прибл. 48 секунд на фото (с границей), прибл. 72 с на фотографию (без полей)
Копирование
Скорость копирования Черная текстовая заметка (A4) — прибл. 32 стр. / Мин (черновик) и цветное текстовое примечание (A4) — прибл. 9 копий в минуту (черновик)
Режимы копирования Стандартный, без рамки
Увеличение при сокращении 25-400%, функция автоподбора
Сканер
Сканер Тип Цветной сканер цветных изображений
Оптическое разрешение 1200 т / д
Битовая глубина Цвет (48-битный внутренний, 24-битный внешний), Оттенки серого (16-битный внутренний, 8-битный внешний) и черно-белое (16-битное внутреннее, 1-битное внешнее)
Скорость сканирования Монохромный 300 dpi (2.2 мсек / линия), цветное разрешение 300 точек на дюйм (7,5 мсек / строка), монохромное изображение 600 точек на дюйм (7,0 мсек / линия), цветное изображение 600 точек на дюйм (13,1 мсек / линия), монохромное изображение 1200 точек на дюйм (8,8 мсек / линия) и цветное разрешение 1200 точек на дюйм ( 25,4 мсек / линия)
Макс. Размер сканирования 216 x 297 мм (8,5 x 11,7 дюйма)
Факс
Тип факса Возможность черно-белого и цветного факса с факсом
Скорость факса Прибл.3 с / с.
Разрешение факса Стандарт (200×100), Fine (200×200) и Фото (200×200 с диффузией ошибок)
Возможность подключения и совместимость
Возможность подключения Высокоскоростной USB 2.0
Поддержка ОС Windows XP / XP Professional x64 Edition / Vista / 7, Mac OS 10.4.11 или более поздней версии

Более 30 моделей в наличии!


Приблизительно 5000 принтеров всегда доступны!


Отправьте запрос и получите предложение прямо сейчас!

Мы также покупаем чернильные картриджи!

Упаковка и доставка

Мы отправляем все принтеры в оригинальной цветной коробке!

Вы можете забрать товары из 3 различных портов по вашему усмотрению:
— Лос-Анджелес
— Гонконг
— Yokogama

В других случаях доставка зависит от тарифов транспортных компаний и веса груза.Мы можем организовать доставку по вашему запросу.

Наши услуги

Предпродажное обслуживание: мы представляем информацию о продукции, которую вы хотите знать;
Средний сервис продаж: мы отслеживаем процесс производства продукции, которую вы заказали; Послепродажное обслуживание
: мы можем помочь вам решить некоторые проблемы при использовании.

Информация о компании

Компания INKSYSTEM на сегодняшний день является одной из самых успешных компаний на рынке струйных принтеров, торгующих по всему миру.
Наши представители получают более низкие цены на дистрибуцию и возможность получить маржу до 150%, сильную рекламу, техническую и организационную поддержку. Более 150 компаний и частных предпринимателей из более чем 20 стран начали сотрудничество с INKSYSTEM за последние три года.

Мы также можем регулярно покупать оригинальные / оригинальные / начальные картриджи для принтеров Epson!

Наш основной продукт:
1. Струйный принтер;
2. СНПЧ (система непрерывной подачи чернил) для принтеров Epson / HP / Canon / Brother;
3.Краска / Пигмент / Сублимационные чернила для принтеров Epson / HP / Canon / Brother;
4. Перезаправляемые картриджи для принтеров Epson / HP / Canon / Brother.

Вы имеете дело с оригинальными / оригинальными / стартовыми чернильными картриджами ?!

Сократите свои расходы на печать с нами!

Пожалуйста, свяжитесь с нами, чтобы начать совместную работу!

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *