Сплавы металлов картинки: D1 81 d0 bf d0 bb d0 b0 d0 b2 d1 8b d0 bc d0 b5 d1 82 d0 b0 d0 bb d0 bb d0 be d0 b2 картинки, стоковые фото D1 81 d0 bf d0 bb d0 b0 d0 b2 d1 8b d0 bc d0 b5 d1 82 d0 b0 d0 bb d0 bb d0 be d0 b2

Содержание

Тайны древних сплавов


Фото: Владислав СтрекопытовРезультаты исследований древнейших находок металлических изделий показывают, что древние мастера не только владели обширными познаниями в области свойств металла и способах его обработки, но и то, что эти знания были универсальными.Как могло получиться, что в период раннего и среднего бронзового века на огромной территории от Южного Урала до Адриатики, Персидского залива и Восточного Средиземноморья существовала единая технология выплавки металлов, да и составы получаемых сплавов были во многом идентичные? Ведь если принять за основу общепринятую теорию освоения человеком металлургии методом «случайного экспериментирования», технологии и методы выплавки металлов должны были довольно сильно отличаться друг от друга в разных центрах древней металлургии, находясь в зависимости от десятка различных факторов — различия минеральных видов руд, топлива, местных географических и климатических условий. Исследования последних десятилетий серьезно пошатнули традиционный взгляд на историю освоения металлов человеком.
Особенно много противоречий между эмпирическими фактами и устоявшейся теорией обнаруживается для самых ранних стадий древней металлургии, считает Андрей Скляров.


Скляров Андрей Юрьевич

Директор Фонда развития науки «III тысячелетие». писатель, режиссер, путешественник, исследователь, организатор ряда съемочно-исследовательских экспедиций в разные страны мира. Автор ряда книг и статей. Обладатель премии «Золотое перо Руси».

РЗ: Что можно сказать по поводу состава древних сплавов?
Установлено, что многие древнейшие бронзовые предметы изготовлены не из чистой меди, а из медно-мышьяковых сплавов. При этом производство мышьяковистых бронз даже на самом раннем этапе явно не было «случайным результатом», а имеет все признаки целенаправленного легирования меди мышьяком — причем не добавками к готовому металлу, а посредством смешивания медных и мышьяковистых руд на стадии плавки. Абсолютно нигде не обнаруживается никаких следов неудачных экспериментов с «неправильными» рудами.

Древние металлурги каким-то образом сразу использовали верный рецепт. Нигде нет следов и экспериментирования с топливом. В частности, при наличии больших залежей каменного угля в Турции ни на одном этапе своей деятельности древние металлурги его так и не пытались использовать. Для плавок всегда использовался только древесный уголь.


Фото: Владислав Стрекопытов

В целом получается, что в Анатолийско-Иранском очаге древний человек каким-то образом освоил сразу и вдруг довольно сложную, но при этом весьма эффективную технологию получения медных сплавов из руды.
Чаще всего в древних находках мы видим присутствие сплава обычной оловянистой бронзы с метеоритным железом. Также везде, где материалом предположительно служили металлы, относящиеся к древней цивилизации, в больших количествах присутствует никель. Еще в 20-е годы прошлого века при Британском королевском обществе была создана специальная комиссия, которая пыталась выяснить источники никеля в самых древних из известных металлических изделиях.

Откуда взялся никель в самой древней бронзе, непонятно. В Турции есть находки бронзовых изделий, в которых 20–40% никеля. Это невозможно объяснить наличием в руде первичных примесей, так как 1,5% — это уже богатое металлом месторождение. Большинство залежей содержит еще меньше никеля. А месторождения никеля в Восточной Турции или Северном Иране неизвестны. Неужели руду возили за тысячи километров? Зато и в Восточной Турции, точно так же, как в Южной Америке, присутствуют древние сооружения с полигональной мегалитической кладкой. Но в этих регионах обнаруживаются не только абсолютно схожие сооружения, но и тот же состав бронзы.

РЗ: То есть можно говорить о древних технологиях, унифицированных в глобальном масштабе?
Да. В Перу тоже использовался в процессе плавки только древесный уголь, хотя на севере Перу масса антрацита. Вся бронза там тоже мышьяковистая, хотя проявления мышьяковых руд есть только высоко в горах. А производство датируется III тысячелетием до н. э.
Интереснейшие древние изделия — металлические стяжки, скреплявшие каменные блоки древних сооружений. В частности, знаменитый район Тиауанако в Боливии — там тоже нет ни одной находки с оловянистой бронзой. Здесь в составе всех изделий из бронзы помимо меди и мышьяка еще и никель, хотя нигде в округе никелевых руд нет. Ближайшие месторождения есть в Бразилии и в Колумбии. И туда и туда — 2000 км. Причем до определенного периода бронзовые изделия и посуда содержали в своем составе никель, а потом бронза стала просто мышьяковистой. Вывод — бронза с никелем была получена путем переплавки стяжек, скрепляющих плиты и блоки древних мегалитических сооружений. Данный вывод подкреплен результатами анализов содержания изотопов свинца в сплавах. А эти стяжки были выплавлены неизвестно кем и неизвестно когда.


Состав медных сплавов изделий Циркумпонтийской металлургической провинции

РЗ: Как же получали такие сплавы, причем массово?
Когда мы говорим о сплаве металлов, бронзе, латуни и так далее, все привыкли воспринимать стереотипно — сначала надо получить металлы в чистом виде, а потом сплавить. Да, так работает современная промышленность. Для примитивных технологий гораздо эффективнее выплавлять сразу из руды комплексный продукт.
Если это так, то отсюда получается очень интересный вывод — раннего периода, так называемого «медного века», в истории человечества, скорее всего, не было. А это значит, что древний человек, осваивая металлы, сразу перешел к плавке и сразу начал изготавливать сложные сплавы. Ранее нас учили, что для организации металлургического процесса нужно наличие высокоорганизованного общества. А на самом деле мы видим, что люди перешли к выплавке бронзы, когда еще не было никаких государственных образований. Это был период племенного уклада, когда люди жили небольшими общинами.

РЗ: Где были обнаружены древнейшие металлические изделия?
Самым древним свидетельством использования человеком металла считаются находки в неолитическом поселении на холме Чайоню-Тепеси в Юго-Восточной Анатолии (в верховьях реки Тигр). Металлические изделия были найдены в напластованиях холма, возраст которых по радиоуглероду составляет 9200 ±200 и 8750 ±250 лет до нашей эры.

РЗ: Можно ли в связи с этим сказать, что впервые люди научились обрабатывать металлы именно в Междуречье?
Еще не так давно шумерская цивилизация, располагавшаяся в Междуречье — обширном низменном районе между реками Тигр и Евфрат, считалась историками чуть ли не самой древнейшей цивилизацией на планете, с достижениями которой (равно как и с достижениями Древнего Египта) сравнивались новые археологические находки в других регионах. Порой датировки этих находок подгонялись под известные шумерские артефакты так, чтобы не нарушить почтенного звания Шумера как «древнейшей цивилизации».
Однако во второй половине ХХ века ситуация начала серьезно меняться. Резко возросло число находок, которые были куда совершеннее шумерских, но при этом оказывались более древними по возрасту. Датировки соседних с Древним Шумером культур уверенно поползли назад во времени, и ныне разрыв между ними достигает порой уже многие тысячи лет. Жители Древнего Шумера во многих сферах своей деятельности оказались вовсе не гениальными изобретателями, а всего лишь наследниками и продолжателями более древних народов.

Именно такая ситуация имела место, например, с Бактрийско-Маргианским археологическим комплексом. Найденные здесь выполненные на высочайшем уровне изделия из бронзы датируются XXIII–XVIII тысячелетиями до н. э., а это гораздо древнее.
Дело в том, что металлургия невозможна без соответствующей сырьевой базы, а на территории Междуречья нет и не было сколь-нибудь серьезных рудных залежей. Так что шумерские мастера могли работать только с привозным сырьем (рудами) или уже со слитками металла, выплавленного в других регионах. То, что так и было, подтверждается переводами шумерских текстов, где указывается на весьма развитую систему торговли и обмена металлами не только с соседями, но и с весьма удаленными странами. В этих условиях трудно себе представить, чтобы искусство металлургии могло возникнуть в самом Древнем Шумере. Оно явно должно было иметь внешний источник.


1–2. Абсолютное сходство технологий полигональной кладки на сооружениях из Аладжа-хююка, Турция (1) и Куско, Перу (2).
3. Бронзовая маска культуры Саньсиндуй (Китай, III – начало I тысячелетия до н. э.). 4. Бронзовая маска (Перу). 5. Бронзовый «солнечный диск» из Аладжа-хююка (Турция)
Фото: Фонд развития науки «III тысячелетие»

РЗ: То есть «древнейшая» шумерская цивилизация от кого-то унаследовала технологию обработки металла?


Ни один народ, ни одна древняя культура не ставит себе в заслугу изобретение металлургии. Абсолютно все древние легенды и предания единодушно утверждают — умение получать и обрабатывать металлы народам дали некие могущественные боги. Боги, которые жили и правили на Земле много тысяч лет назад. Любопытно, что, согласно легендам и преданиям, те же самые боги обучили людей гончарному ремеслу. А ведь гончарное производство является жизненно необходимым для древней металлургии — без керамических тиглей тут никак не обойтись. Вдобавок для качественного обжига керамики требуются температуры, аналогичные температурам при металлургической плавке, а следовательно, нужны и схожие конструкции печей, обеспечивающие необходимый температурный режим. Более того. Те же боги дали людям и земледелие. И в этом случае получает вполне логичное объяснение та странная связь, которая существует между очагами древней металлургии и центрами древнейшего земледелия. Связь, которую историки подметили, но никак не объясняют.
Когда речь идет о древних богах, упоминаемых в легендах и преданиях, необходимо учитывать очень важный момент, что в этот термин наши предки вкладывали совсем иной смысл, нежели мы сейчас вкладываем в слово «Бог». Наш современный Бог — это сверхъестественное всесильное существо, обитающее вне материального мира и распоряжающееся всем и вся. Древние же боги в легендах и преданиях вовсе не столь могущественные — их способности хоть и превышают многократно способности людей, но вовсе не бесконечны. При этом довольно часто эти боги, для того чтобы что-то сделать, нуждаются в специальных дополнительных предметах, конструкциях или установках — пусть даже «божественных».

РЗ: Насколько уникальны находки древних металлических изделий, и ограничиваются ли они только регионом Междуречья?
Подобные находки есть и в древних поселениях на территории Анатолии. Таких поселений уже найдено немало, и еще больше подобных находок следует ожидать в ближайшем будущем, поскольку ныне археологические исследования в центральных и восточных районах Турции только набирают обороты. Есть подобные находки и в северо-западном Иране.
Характер находок во всех регионах Ближнего Востока, относящихся к раннему бронзовому веку, сходный, что свидетельствует о вхождении Северной Месопотамии, Восточной Анатолии, Западного Ирана и Северного Кавказа в единую культурную Сиро-Палестинскую зону, о которой писали и другие авторы. Наши исследования подтверждают эту точку зрения и позволяют говорить о том, что основой формирования этой зоны во многом стала общая традиция металлопроизводства.
Еще один регион распространения бронзы — Индия. Совершенно самостоятельный регион, где примерно в III тысячелетии до н. э. появляются бронзовые статуэтки, обладающие характерной стилистикой и очень высоким уровнем детализации. В III тысячелетии до н. э. изделия из бронзы появляются и в Китае. На территории Индокитая есть находки бронзовых изделий, относящихся к V тысячелетию до н. э.


Полигональная мегалитическая кладка (Ольянтайтамбо, Перу). Фото: Владислав Стрекопытов

Доисторический «Вторцветмет»
Разнообразие форм выемок под стяжки и их расположение привели участников экспедиции Фонда «III тысячелетие», которая посетила Тиауанако (Мексика) в 2007 году, к двум версиям того, как можно было изготавливать эти стяжки. Либо использовалось что-то типа модифицированной технологии порошковой металлургии, когда сначала в выемки засыпался порошок металла, а затем через него пропускался мощный импульс тока, в результате чего происходил быстрый и сильный нагрев частиц металла и они сплавлялись в единое целое. Либо создатели комплекса заливали в выемки расплавленный металл, для чего использовали мобильные портативные металлургические печи для плавки металла непосредственно на месте строительства. Более вероятным представляется второй вариант, тем более что и другие исследователи выдвигали именно это предположение.
К счастью, некоторые стяжки сохранились до наших дней и были найдены археологами. И, если ориентироваться на имеющиеся материалы, речь все-таки нужно вести об отливке стяжек. Химический анализ состава найденных археологами стяжек дал сенсационный результат. Этот анализ показал, что они содержат 95,15% меди, 2,05% мышьяка, 1,70% никеля, 0,84% кремния и 0,26% железа. Если наличие кремния и железа можно списать на остаточные примеси, которые имелись в исходной руде и флюсах, то присутствие в сплаве подобного количества мышьяка и никеля однозначно указывает на преднамеренное легирование этими элементами.


Одна из немногих сохранившихся стяжек (Аксум, Эфиопия). Фото: Владислав Стрекопытов

Первоначально историки не увидели в подобном составе металлических стяжек ничего обескураживающего, поскольку найденные в комплексе Тиауанако и близ него бронзовые изделия, которые относятся к одноименной культуре, имеют схожий состав. И даже наоборот, это сходство состава использовалось историками в качестве «доказательства» того, что сооружения древнего комплекса якобы создавались как раз индейцами культуры тиауанако три с половиной тысячи лет назад. Оставалась только одна проблема — отсутствие поблизости необходимых месторождений никелевых руд. Ясно, что вряд ли индейцы культуры тиауанако перемещались на тысячи километров в поисках необходимого металла. Кроме того, получение чистого никеля — процесс очень непростой и весьма капризный. И ныне основная часть никеля производится в качестве побочного продукта в ходе получения других металлов. Так что индейцам пришлось бы доставлять за две тысячи километров непосредственно руду. При этом никелевые руды не поддаются механическому обогащению, а содержание металла в рудах обычно очень невелико. Ясно, что это выходит за любые разумные рамки.
Однако проблема с источником никеля достаточно легко снимается, если не ограничиваться той картиной, которую историки нарисовали для древнего Тиауанако. Для этого нужно лишь учесть некоторые особенности в распространенности изделий из различных видов бронзы в данном регионе. На раннем этапе 80% всех изделий были изготовлены из трехкомпонентной бронзы (медь, мышьяк, никель), однако затем состав изделий сменяется оловосодержащей бронзой. При этом механические свойства оловянной бронзы мало отличаются от свойств трехкомпонентной бронзы.
Производство из трехкомпонентной бронзы просто закончилось в одночасье. Но источников олова (в отличие от источников никеля) в высокогорьях Перу и Боливии предостаточно. Тогда почему производство изделий из трехкомпонентной бронзы продолжалось весьма длительное время, а затем внезапно закончилось? Наиболее простое объяснение буквально лежит на поверхности. Производство изделий из трехкомпонентной бронзы закончилось, потому что иссяк источник. Медные и мышьяковистые руды никуда не делись — их и сейчас там очень много. Иссяк источник никеля, местоположения которого исследователи до сих пор не могут найти. И вряд ли найдут до тех пор, пока будут искать его среди местных руд.
Все встает на свои места, если предположить, что источником не только никеля, но и всех других составляющих трехкомпонентной бронзы для индейцев служили… стяжки, которые строители мегалитических сооружений в Тиауанако использовали для скрепления блоков. Индейцы не выплавляли трехкомпонентную бронзу из руд, а просто переплавляли эти стяжки и использовали уже готовый сплав для отливки из него своих собственных изделий. Это объясняет и сходство состава изделий из трехкомпонентной бронзы на обширной территории, и внезапное прекращение производства индейцами изделий из такой бронзы — в некий момент стяжки просто закончились.

Владислав Стрекопытов

сплавы металлов

Любое производство, от крупного до гаражного, имеет дело именно со сплавами металлов, а не с чистыми металлами (чистые металлы применяют лишь в атомной промышленности). Ведь даже широко распространённая сталь является сплавом, в котором содержится до двух процентов углерода, но об этих нюансах будет написано подробнее ниже. В этой статье будет описано большинство сплавов, их получение, основные и полезные свойства, применение и многие другие нюансы.

Эта статья о сплавах металлов, причём мы не будем особо углубляться в дебри материаловедения и описывать абсолютно все сплавы, да и нереально это в пределах одной статьи. Ведь если углубиться в эту тему, и затронуть хотя бы большинство, то можно растянуть статью в необъятное полотно. Здесь будут описаны самые популярные сплавы с точки зрения автомобилестроения и мотопрома (согласно тематике сайта), хотя немного будут затронуты и другие аспекты промышленности.

Но кроме сплавов, всё же следует написать пару слов о самих металлах, точнее о их удивительном свойстве, благодаря которому и появились различные сплавы. И главное свойство металлов в том, что они образуют сплавы, как с другими металлами, так и с неметаллами.

Само понятие сплав — это совсем не обязательное химическое соединение, ведь уникальные свойства кристаллической решётки заключаются в том, что часть атомов одного металла замещается атомами другого металла, либо две кристаллические решётки как бы встраиваются друг в друга.

И при этом получаются как бы неправильные сплавы, но самое удивительное в том, что эти неправильные сплавы, по своим свойствам получаются гораздо лучше чистых металлов. Причём экспериментируя и манипулируя с добавками, на выходе можно получить материалы (сплавы) с нужными и полезными качествами.

Следует отметить, что по технологии применения все сплавы делятся на две большие группы. Первая группа — это деформируемые сплавы, из которых многие детали изготавливают механической обработкой: ковка, штамповка, резание и т.д. И вторая группа сплавов — это литейные и из них получают детали с помощью литья в формы.

У первой группы сплавов имеются такие свойства, как хорошая пластичность в твёрдом виде, ну и высокая прочность, но литейные качества у первой группы не высоки. У второй группы напротив литейные свойства отличные, они хорошо заполняют форму при литье, но когда застынут, то прочность их оставляет желать лучшего.

А что такое прочность? — это ценное свойство оценивают по разным параметрам, которых более десяти, но самое ценное свойство — это предел прочности сплава при растяжении. Говоря научным языком — это напряжение сплава (измеряется в Н/м², ну или в кг/мм²) которое соответствует наибольшей нагрузке, предшествующей началу разрушения испытуемой детали, относительно изначальной площади поперечного сечения детали.

А теперь говоря более простым языком: берём специально изготовленную деталь (согласно стандарту испытаний) из испытываемого сплава и закрепив её в специальной машине растягиваем её, постепенно увеличивая нагрузку, пока не происходит разрушение детали (её разрыв).

Ну а приложенное усилие, (которое контролируется приборами и которое было приложено к детали, в самый момент перед её разрывом) разделенное на площадь поперечного сечения детали, и показывает предел её прочности (ну и разумеется предел прочности сплава, из которого изготовлена испытываемая деталь).

Самые распространённые на нашей планете металлы (и разумеется на их основе получаемые сплавы) — это железо, алюминий, магний и как ни странно для многих — титан. Все эти металлы в чистом виде не употребимы в технике, а вот их сплавы напротив — очень распространены.

И о сплавах будет описано далее, но всё же и о самих металлах я тоже кое что напишу, ведь без металлов не было бы и сплавов. К тому же при описании самих металлов будет понятно и из чего получают сплавы металлов.

Железо и сплавы металлов на его основе.

Металл железо — это «хлеб» всей мировой промышленности. Ведь большинство сплавов, используемых в мировой промышленности (более девяноста процентов) используют именно сплавы железа. Причём очень важной добавкой в железо является совсем не добавки металла, а неметалла — углерода.

Если в железо добавить не более двух процентов углерода, то получим самый востребованный сплав (сплав номер один) — это сталь. Ну а если в сплаве железа содержание углерода будет более двух процентов (от двух до пяти) то получим чугун, который тоже является важнейшим материалом в мировой промышленности. Теперь остановимся на сплавах железа более подробно.

Сталь.

Сплав железа с углеродом, в котором углерода содержится не более двух процентов. Так же содержит примеси кремния, марганца, фосфора, серы и др. Как было сказано выше, является важнейшим сплавом для промышленности, так как обладает отличной ковкостью и довольно высокой прочностью.

К какой бы детали автомобиля, мотоцикла, ну или оборудования (на заводе или в обычном гараже) мы бы не кинули взор, везде мы увидим присутствие стальных деталей. Те же элементы подвески машин и мотоциклов, кузовные элементы автомобиля, рамы, рули, подвеска и навеска большинства мотоциклов, внутренние детали двигателя, или коробки передач, да много ещё чего, начиная от сложнейших деталей различного оборудования и заканчивая обычными болтами и гайками.

Предел прочности на разрыв составляет от 30 до 115 кг/мм² — это для углеродистой стали, ну и предел прочности для легированной стали достигает 165 кг/мм².

Легированную сталь получают добавкой, кроме углерода, ещё и различных легирующих элементов, добавляющих стали различных важных и полезных свойств.

  • Так например добавка марганца увеличивает стойкость стали к ударным нагрузкам и добавляет твёрдости.
  • Добавка никеля повышает коррозионную стойкость и пластичность, ну и добавляет прочности.
  • Ванадий повышает сопротивление ударным нагрузкам, истиранию (уменьшает коэффициент трения) и тоже добавляет прочности стали.
  • Хром в составе стали тоже повышает коррозионную стойкость и прочность.

Ну а при добавке хрома и молибдена в определённых пропорциях, получают самую прочную и податливую хром-молибденовую сталь, которая используется для производства ответственных деталей, например для производства рам спортивных автомобилей и мотоциклов.

Ну и вершиной металлургической эволюции стала легендарная прочнейшая сталь «хромансиль» (хромо-кремне-марганцовая сталь) с самым высоким показателем прочности на разрыв.

И хотя новейшие технологии не стоят на месте и сейчас кроме хром-молибденовых и алюминиевых рам уже изготавливают (точнее склеивают) рамы из композитных материалов (тот же карбон, кевлар и т.п), но всё же стальные рамы кроме своей прочности ещё и ощутимо дешевле и поэтому используются до сих пор. Ну а большинство внутренних деталей двигателей, коробок передач и оборудования (станков) думаю ещё долго будут изготавливать из стали.

Выше были перечислены далеко не все компоненты, добавка которых может существенно улучшить свойства стали и при умелом подходе позволит достичь нужных и важных качеств стальных деталей, работающих в разных условиях.

Кроме множества плюсов, главными из которых являются прочность и ковкость, у стали имеются и минусы. Первый из них — это довольно высокая стоимость и ограничения по свариваемости легированных сталей (используют сложную технологию сварки), так как обычные способы электро-дуговой сварки «улетучивают» большинство легирующих элементов и ощутимо снижают прочность сварного шва.

Ну и у большинства сталей (кроме нержавеющих) ещё одним существенным минусом является малая стойкость к коррозии, хотя опять же при грамотной добавке нужных элементов можно существенно повысить коррозионную стойкость.

Сталь разных сортов выпускают в виде проката: полосы, ленты, листы, прутки (круглые и шестигранные) профильный материал, трубы, проволока и др.

По назначению сталь делят на конструкционную, инструментальную и специальную:

  • Конструкционная содержит до 0,7 процентов углерода и из неё изготавливают детали машин, оборудования, различных приборов и приспособлений.
  • Инструментальная сталь содержит от 0,7 до 1,7 процентов углерода и её используют как правило для изготовления различного инструмента.
  • Специальная сталь — это жаропрочная сталь, нержавеющая, немагнитная и другие стали с особыми свойствами.

По качеству разделяют сталь обыкновенного качества, качественную и высококачественную:

Углеродистая конструкционная сталь обыкновенного качества содержит от 0,08 до 0,63 процента углерода. Содержание углерода в каждой марке этой стали как правило точно не выдерживают и марку определяют по механическим свойствам этой стали.

Из стали №1 изготавливают листовой и полосовой материал, а так же различные прокладки, заклёпки, шайбы, бачки и т.п. А из стали №2 делают ручки, петли, крючки, болты, гайки и т. п. Из стали №3 и №4 изготавливают как правило строительные конструкции, а из стали №7 делают шпонки, кулачковые муфты, клинья, рельсы, рессоры, которые затем термически обрабатывают.

Углеродистая конструкционная качественная сталь содержит до 0,2 процентов углерода и из неё изготавливают детали, к которым предъявляются повышенные требования по их механическим свойствам и для термически обработанных деталей. Эта сталь имеет марку от №8 и вплоть до сталь №70. А число показывает примерно среднее содержание углерода в сотых долях процента.

Эта сталь довольно пластичная и вязкая и благодаря этому отлично штампуется и сваривается. А при изготовлении деталей работающих с ударными нагрузками, или подвергающиеся трению, такие детали из этой стали цементируют. А сталь с содержанием углерода свыше 0,3 процента не цементируют.

Из сталей марок Ст 30 или 35 делают гайки, болты, шпильки и шайбы (для ответственных конструкций), а из сталей 45 изготавливают валы, муфты, втулки и другие подобные детали, которые подвергают термической обработке (закалке и отпуску). Ну а из прочной и твёрдой стали марок Ст 50, 55 и 60 изготавливают шестерни, звёздочки (зубчатые колёса), шатуны, рессоры и другие детали, которые так же подвергаются термической обработке.

Углеродистую конструкционную качественную сталь, с повышенным содержанием марганца, который увеличивает твёрдость и прочность, выпускают марок от 15Г, 20Г, 30Г и вплоть до 70Г или марки с цифрой 2: 10Г2, 30Г2 и вплоть до 50Г2. Ну а цифра, стоящая перед буквой Г опять же показывает среднее процентное содержание углерода (в сотых долях процента). Буква Г означает, что марганца в этой стали около 1 процента, а если за буквой Г стоит цифра 2, то содержание марганца в такой стали около 2 процентов.

Из сталей 10Г2,  15Г и 20Г изготавливают цементируемые детали, из стали 45Г2 делают шатуны двигателей, вагонные оси, а из стали 65Г изготавливают клапанные пружины двигателей.

Из конструкционной легированной стали делают детали машин, у которых должна быть большая прочность, кислотостойкость, твёрдость (даже при сильном нагреве) и другие качества, которые достигаются добавкой легирующих компонентов.

Двузначное число, стоящее  в начале марки стали, указывает на процентное содержание углерода в сотых долях. А стоящие далее буквы обозначают легирующую добавку: Н — никель, Х-хром, С — кремний, В — вольфрам, К — кобальт, Т — титан, М — молибден, Г — марганец, Ю — алюминий, Д — медь …..

  • Добавка хрома способствует повышению твёрдости и прочности стали (атак же коррозионную стойкость) при этом сохраняется достаточная вязкость стали. Из хромистых сталей делают зубчатые колёса (шестерни) коленвалы, червяки и др. детали. Если же встали содержится хрома до 14 процентов, то она отлично сопротивляется коррозии. Из такой стали изготавливают контрольно-измерительные и медицинские инструменты. Ну а если процентное содержание хрома составляет более 17 процентов, то такая сталь становится кислотостойкой и нержавеющей.
  • Добавка никеля повышает прочность стали и также повышает коррозионную стойкость, ну и делает сталь более вязкой (менее хрупкой).
  • Добавка кремния повышает прочность и упругость стали и поэтому его добавляют в рессорную сталь Если же встали содержится значительное содержание кремния и хрома, то такая сталь называется сильхромовой и обладает высокой жаропрочностью. Из сильхромовой стали изготавливают клапаны двигателей.
  • Добавка Молибдена и вольфрама повышает твёрдость и прочность стали, причём эти качества сохраняются и при довольно высоких температурах и поэтому из такой стали изготавливают режущие инструменты.

Числа за буквой показывают процентное содержание легирующего компонента. Если же за буквой отсутствуют цифры, то значит легирующего компонента содержится в стали всего около 1 процента. Если же в конце маркировки стоит буква А, то значит эта сталь высококачественная.

Конструкционную сталь выпускают в виде листов, полос и лент, труб, разной толщины, а так же прутков (круглых, квадратных и шестигранных) в виде различных балок, которые имеют различное сечение (тавровое, двутавровое, угловое, швеллерное и др.).

Из углеродистой инструментальной стали делают различные слесарные инструменты: зубила, молотки, полотна, напильники, кернеры, бородки, свёрла, гаечные ключи, торцовые головки и другой различный инструмент.

Чугун.

Как было сказано выше, если содержание углерода в сплаве металла (точнее железа) содержится от двух до пяти процентов, то такой материал — чугун. Кроме углерода в чугун добавляются примеси фосфора, кремния, серы и др. компонентов. Чугун со специальными примесями (хром, никель, и др.) которые придают чугуну особые свойства , называют легированным. Температура плавления чугуна 1100 — 1200 градусов.

Литейный чугун бывает серый, белый, высокопрочный и ковкий.

  • Серый чугун содержит углерод в виде пластинчатого графита (и часть цементита) и обладает относительно небольшой твёрдостью и хрупкостью, легко обрабатывается резанием. Но благодаря малой стоимости и отличными литейными свойствами, из серого чугуна льют различные колонны, плиты, станины станков, корпуса электро-моторов, шкивы, маховики, зубчатые колёса, радиаторы отопления, и многие другие детали. Серый чугун обозначается буквами СЧ и двумя двухзначными цифрами. К примеру серый чугун марки СЧ21-40 имеет предел прочности при растяжении 210 Мн/м² (или 21 кгс/мм²) а при изгибе предел прочности составляет 400 Мн/м² (или 40 кгс/мм²).
  • Белый чугун  — в нём весь углерод содержится в виде цементита и это придаёт белому чугуну большую твёрдость, но и хрупкость и этот чугун трудно поддаётся обработке резанием.
  • Высокопрочный чугун содержит углерод в виде включений шаровидного свободного графита (с добавлением цементита) и  это придаёт высокопрочному чугуну бóльшую прочность, по с равнению с выше описанным серым чугуном. Прочность этого чугуна увеличивают добавками легирующих компонентов, таких как никель, хром, молибден, титан. Но высокопрочный чугун труднее обрабатывается резанием, чем серый чугун. Из этого чугуна отливают ответственные детали: блоки, головки, гильзы, поршни и цилиндры двигателей, компрессоров, зубчатые колёса и другие детали машин и оборудования. Маркируется этот чугун двумя буквами ВЧ и двумя числами. К примеру марка ВЧ40-10 говорит о том, что это высокопрочный чугун, спределом прочности при растяжении 400 Мн/м² (или 40 кгс/мм²) с относительным удлинением в 10 процентов.
  • Ковкий чугун производят с помощью длительного томления болванок (отливок) из белого чугуна при высокой температуре, которая способствует выжиганию части углерода и переходу остальной части в графит. Ковкий чугун при этом получает полезные качества: относительно большое сопротивление изгибу, хорошую обрабатываемость, меньшую плотность. Из ковкого чугуна делают детали механизмов, которые работают в условиях повышенных напряжений и ударных нагрузок, а так же работающих при высоком давлении пара, воды, газов. Делают картеры задних мостов и коробок передач автомобилей, корпуса редукторов промышленного оборудования, тормозные диски, суппорта и тормозные цилиндры, задвижки водопроводов, патроны и планшайбы токарных станков и другие детали. Обозначается ковкий чугун буквами КЧ и двумя цифрами. К примеру буквы и цифры марки КЧ45-6 означают, что такой чугун ковкий и имеет предел прочности при растяжении 450 Мн/м² (или 45 кгс/мм²) с относительным удлинением 6 процентов.

Он распространён в промышленности (особенно в станкостроительной при производстве станин металлорежущих станков) не менее стали, а его дешевизна (ведь он самый дешёвый из конструкционных материалов) наверное является одним из главных факторов его популярности.

К тому же у чугуна, кроме его минусов, имеется достаточно полезных свойств. Литейный чугун прекрасно заполняет различные формы, но один из главных его минусов — это хрупкость. Но несмотря на малую прочность, чугун издавна применяют в двигателестроении. Ещё не так давно из чугуна отливали блоки двигателей, картерные детали, картеры различных редукторов, гильзы цилиндров, головки блоков двигателей, поршни.

 

Кстати, оторвусь от темы: чугунные поршни, в отличие от алюминиевых, имеют такой же коэффициент расширения как и чугунная гильза и поэтому зазор поршень-цилиндр можно сделать минимальным, а это способствует повышению мощности и других полезных свойств. Конечно же алюминиевые поршни ощутимо легче чугунных и лучше ведут себя на больших оборотах и в алюминиевом блоке с никасилевым покрытием, но всё же поршни различных компрессоров предпочтительнее изготавливать из чугуна.

Ну и ещё, несмотря на то, что алюминиевые блоки с никасилевым покрытием сейчас уже изготавливают для современных машин, но всё же до сих пор многие заводы льют и чугунные блоки. Ведь если добавить в чугун немного графита, то можно существенно снизить коэффициент трения поршня о гильзу.

Но всё же чугунные блоки двигателей постепенно вытесняются лёгкосплавными, особенно блоки моторов мотоциклов. А всё из-за того, что у чугуна имеется ещё один существенный минус — он довольно тяжёлый. И поэтому блоки (и цилиндры) двигателей спортивных машин и мотоциклов уже с двадцатых готов прошлого века начали отливать из алюминия (об алюминии ниже).

Сначала делали алюминиевые блоки и цилиндры с чугунной гильзой, затем от чугунной гильзы отказались и сейчас начали покрывать стенки цилиндров различными твёрдыми и износостйкими гальваническими покрытиями, сначала хром, затем никасиль, далее более сложные металло-керамические композиции, самое продвинутое из которых керонайт, о котором подробнее я написал вот тут.

Но всё же чугун используют до сих пор, (особенно в станкостроительной промышленности) и особенно ковкий чугун. Ведь ковкий чугун пластичнее обычного и прочнее. Предел прочности ковкого чугуна от 30 до 60 кг/мм² и это позволяет использовать его не только в станкостроении, но и изготавливать даже детали машин и мотоциклов, ведь тормозные диски до сих пор изготавливают из ковкого чугуна.

Ну а некоторые марки чугуна до сих пор используют для изготовления коленвалов двигателей (например в двигателе Днепра), а также для изготовления поршневых колец, не забываем, что при добавке графита, чугунные кольца имеют малый коэффициент трения, а это важно для любого двигателя. Ну и ещё: многие наверное знают, что чугунная головка двигателя (несмотря на свой бóльший вес) меньше подвержена деформации при перегреве мотора, чем более лёгкая алюминиевая головка.

И всё же ещё достаточно долго чугун будет материалом номер два (после стали) практически в любой тяжёлой промышленности.

Цветные металлы и сплавы металлов.

Несмотря на то, что тема статьи сплавы металлов, обязательно следует упомянуть и о цветных металлах, на основе которых и получают большинство сплавов. К цветным металлам относятся практически все металлы кроме железа. И они делятся на:

  • лёгкие : рубидий, литий, натрий, калий, натрий, церий, бериллий, кальций, магний, титан и алюминий.
  • тяжёлые: свинец, цинк, медь, кобальт, никель, марганец, олово, сурьма, хром, висмут, мышьяк и ртуть.
  • благородные: платина, золото, серебро, палладий, родий, иридий, осьмий, рутений.
  • редкие: молибден, вольфрам, ванадий, тантал, теллур, селен, индий, цезий, германий, цирконий и т.д.

Но если начать описывать все, то как уже говорилось в начале статьи, она превратится в необъятное полотно. И ниже будут описаны только те металлы и их сплавы, которые наиболее распространены и используются в авто-мото промышленности.

Алюминий.

Как знают многие, железо знакомо человечеству несколько тысяч лет, но вот алюминий используют всего то пару сотен лет. И самое интересное то, что алюминий вначале считался ювелирным материалом, а технологии его добычи и получения были такими дорогостоящими, что он считался чуть ли не дороже серебра.

Многим известна история о том, как какой то правитель, получив в руки от ювелира изготовленный и отполированный им алюминиевый кубок, был настолько поражён красотой этого металла и изделия из него, что начал беспокоиться о своих запасах серебра и о том, что его серебро обесценится благодаря алюминию. От этого бедный ювелир был казнён, а кубок надёжно спрятан.

И наверное так и остался бы этот белый металл и его сплавы ювелирным материалом, если б не развитие авиации. Ведь рано или поздно первые летательные аппараты, изготовленные из дерева, должны были доказать свою непрочность, что и случилось и далее инженеры всерьёз взялись за усовершенствование добычи алюминия.

А постараться стоило, ведь этот конструкционный материал в три раза легче стали. Плотность алюминиевых сплавов составляет от 2,6 до 2,85 г/см² (в зависимости от состава). Конечно же инженеры вначале столкнулись и с тем, что механические свойства алюминия совсем не высокие, ведь предел прочности даже для литейных алюминиевых сплавов всего от 15 до 35 кг/мм², а для деформируемых сплавов от 20 до 50 кг/мм² и лишь для самых дорогих и многокомпонентных сплавов прочность достигает 65 кг/мм².

И если сравнивать со сталью, то на первый взгляд покажется, что ведь выигрыша вовсе нет: алюминий втрое легче стали, но зато и в трое слабее. Но ведь законы сопромата никто не отменял и они стали спасением для инженеров, ведь жёсткость конструкционной детали зависит не только от прочности материала, из которого она изготовлена, но ещё и от её геометрической формы и размеров.

И в итоге стал ясно, что алюминиевая деталь того же веса, что и стальная, гораздо жёстче её на кручение и изгибание. Ну а если показатели жесткости стальной и алюминиевой детали одинаковые, то при этом алюминиевая деталь всё равно будет легче по весу, что и нужно для авиации и не только для неё.

И примерно после первой мировой войны, алюминиевые сплавы начали завоёвывать мировую промышленность. Конечно же в начале алюминий хлынул в авиационную промышленность (корпуса, крылья самолётов), позже из него стали отливать картеры, поршни и не только для моторов самолётов, но и автомобилей и мотоциклов. А ещё позднее начали отливать головки цилиндров и сами цилиндры, или блоки двигателей практически для всего транспорта.

Кстати, деталями двигателей дело не ограничилось и ещё в конце двадцатых годов прошлого века были замечены попытки изготавливать из алюминиевых сплавов рамы спортивных автомобилей и мотоциклов, а так же и кузова, но всё же на поток для многих серийных машин и мотоциклов такие изделия удалось поставить лишь к концу 80-х годов прошлого столетия.

Ну а в современной технике алюминиевые детали (кроме перечисленных выше) можно перечислять почти бесконечно — это и детали подвески, как автомобилей, так и мотоциклов (скутеров, велосипедов), колёса, рамы, маятники, рули, траверсы, различные кронштейны, вплоть до багажников на крышу машины или на заднее крыло мотоцикла. Да мало ли ещё чего.

Ну и далее стоит сказать про одну особенность самого алюминия и сплавов металла алюминия. Алюминий очень активный металл к воздействию окружающей среды, но самое интересное, что сама супер активность и помогает ему сохраниться (уберечься от коррозии). Ведь алюминий настолько активный металл, что он мгновенно вступает в реакцию с кислородом воздуха (и влагой, присутствующей в нём).

И от этого на поверхности алюминиевой детали моментально образуется тончайшая окисная плёнка, и именно она и защищает любую алюминиевую деталь от коррозии. Хотя у разных сплавов, в зависимости от компонентов, различная стойкость к коррозии. Например литейные сплавы имеют хорошую защиту, а вот на деформируемых сплавах окисная плёнка очень тонка и слаба и её защитные свойства напрямую зависят от легирующих добавок в сплав.

Например широко известный и применяемый в авиации такой алюминиевый сплав как дюралюминий, имеет настолько слабую окисную плёнку, что очень быстро корродирует, покрываясь белым налётом, и если его не покрыть защитным покрытием, то коррозия его быстро «съест».

В качестве покрытия его ранее покрывали (плакировали) тонкой плёнкой чистого алюминия, но сейчас, при широком развитии гальваники, покрывают различными покрытиями всевозможных довольно ярких цветов (золотого, ярко-синего, красного и т. д).

Ну и ещё стоит написать несколько слов про сам алюминий — это металл с малой плотностью, который хорошо поддаётся ковке, штамповке, прессованию, обработке резанием, да к тому же он обладает довольно высокой электро и теплопроводностью. И поэтому он довольно широко используется в электротехнике (электропромышленности), приборостроении, машиностроении, авиации, как в чистом виде, так и в виде сплавов.

Обладающие относительно достаточной прочностью и твёрдостью сплавы алюминия с медью, марганцем, кремнием и магнием называют дюралюминием, который,как было упомянуто выше, используется в самолётостроении, в машиностроении и других отраслях.

Наряду с дюралюминием, практически все сплавы на основе алюминия (как и сталь) выпускают в виде проката: полосы, ленты, листы, прутки (круглые и шестигранные) профильный материал, трубы, проволока…

Магний. 

Наверное всем, кто держал в руках кусок этого интересного и одного из самых лёгких металлов, кажется что не металл это вовсе, а кусок пластика, настолько он лёгкий. Относится к числу самых лёгких металлов, из применяемых в технике. А его сплавы с цинком, алюминием, кремнием и марганцем используют при изготовлении различных деталей радиоаппаратуры, приборов и т.п.

Раньше этот металл называли модным словом электрон. Плотность этого металла в четыре с половиной раза меньше, чем у железа и составляет всего 1,74 г/см³, и в 1,5 раза меньше чем у сплавов алюминия. Но и прочность магния ниже и предел прочности для литейных сплавов магния составляет от 9 до 27 кг/мм², а для деформируемых от 18 до 32 кг/мм².

Казалось бы совсем небольшая прочность, но опять же не забываем, что законы сопромата никто не отменял, да и очень малый вес перекрывает казалось бы всё.

Но кроме малой прочности, у магния есть и более существенные минусы, первым из которых является высокая цена. И детали мотоциклов или автомобилей, выполненные из магния, существенно поднимают их цену. Но и это ещё не все минусы: пи производстве маний очень легко возгорается при его литье (ну или при сварке) и даже при его механической обработке!

К тому же магний ну уж очень нестойкий к воздействию окружающей среды (к коррозии) и каждую деталь, выполненную из магния, приходится дважды защищать от коррозии — сначала оксидировать, а затем наносить покрытие (лакокрасочное или гальваническое). Но в плохих условиях (например в агрессивной среде зимних дорог) достаточно небольшой царапины на покрытии магниевой детали и она начинает мгновенно корродировать и быстро разрушаться.

Но всё же слишком маленький вес затмевает все минусы и магниевые сплавы используют для изготовления дорогих деталей автомобилей и мотоциклов (и не только). И начали применять его ещё в двадцатые годы прошлого века, а в 80-е годы его применение почти удвоилось даже на серийной технике. Например некоторые не слишком ответственные детали — крышки картеров, сами картеры, крышки головок и другие детали (кстати, картер двигателя даже нашей самой дешёвой советской машины — Запорожца отливали из магниевого сплава).

Но всё же применяли и применяют сплавы магния до сих пор лишь для изготовления рам, шасси, колёс и других деталей спортивной техники, точнее некоторых дорогих серийных автомобилей и мотоциклов, например элитные спортбайки итальянской фирмы «Агуста», модель мотоцикла MV Agusta F4 750 Serie Oro, которая стоила вдвое дороже спортбайков этой же фирмы, но с алюминиевыми рамами, а разница в весе составляла всего лишь в 10 кг.

Но думаю в будущем, с развитием гальванотехники и применения более стойких покрытий, использование магния ещё больше увеличится.

Титан.

Ну это уж совсем интересный материал и само название говорит за себя. Кстати оно появилось из-за титанических сложностей его извлечения из земной коры, особенно на начальном этапе его добычи. На первый взгляд титан внешне похож на сталь, пока не возьмёшь в руки и не почувствуешь, что весит он ощутимо меньше.

Как я упомянул чуть выше, довольно сложная технология извлечения его из земной коры и определила его высокую цену и небольшую распространённость. Большинство металлов и сплавов добывали уже несколько столетий, а вот металлический титан удалось получить только лишь в 1910 году прошлого века. А к 50-м годам прошлого столетия на всей нашей планете было добыто всего то чуть более двух тонн титана!

Но после 50-х годов прошлого века, с развитием покорения космоса (космической техники и скоростной авиации) титан оказался лучшим из конструкционных материалов, благодаря своей большой прочности и лёгкости (об уникальных свойствах титана чуть ниже), и его добыча начала развиваться быстрыми темпами.

Несмотря на то, что титан ощутимо легче стали (4,51 г/см³) прочность его сплавов практически такая же, как и у лучших легированных сталей (75 — 180 кг/см²). К тому же, в отличие от стали, титан обладает отличной коррозионной стойкостью, так как его окисная плёнка имеет высокую прочность. Но и это ещё не всё: некоторые сплавы титана обладают довольно высокой жаростойкостью.

К тому же титановые сплавы нормально свариваются в нейтральной среде, не плохо обрабатываются, ну и обладают хорошими литейными свойствами. Короче плюсов у титана предостаточно, и если б не один существенный минус — его высокая цена, то про стали наверное все бы забыли.

И именно из-за высокой цены, применение титана в авто-мото промышленности пока ограниченно. Но на спортивной технике, которая никогда не отличалась скромной ценой, применение титана с каждым годом увеличивается. Ведь ни для кого не секрет, что из космической промышленности, практически все технические достижения плавно переходят в авто-мото спорт.

И со временем из титана и его сплавов начали изготавливать детали ходовой части спортивных машин и мотоциклов, но всё же чаще всего из него изготавливают детали форсированных оборотистых моторов : клапаны и их пружины, шатуны и другие детали, для которых основное требование — это высокая прочность и лёгкость. А на самых дорогих спортивных машинах из титана даже изготавливают детали крепежа (болты, шпильки и гайки).

Следует сказать ещё вот что: так же, как наблюдалось плавное «перетекание» титановых деталей из космической промышленности в спорт, думаю впоследствии так же будет и постепенное перетекание использования титана и для серийных автомобилей и мотоциклов, впрочем, поживём увидим…

Медь.

Этот металл обладает относительно большой плотностью, имеет характерный красноватый цвет и отличную пластичность. Также медь обладает довольно высоким коэффициентом трения, и отличной электро и теплопроводностью.

Благодаря этому свойству из меди и её сплавов изготавливают электропроводку, контакты, клеммы, детали радиоаппаратуры и приборов (вплоть до паяльников), используют для оборудования пищевой промышленности. Ну а благодаря высокому коэффициенту трения медь используют даже для изготовления различных фрикционных накладок муфт трения и добавки меди можно встретить даже в дисках сцепления автомобилей и мотоциклов.

Но в большинстве случаев чистую медь сейчас довольно редко используют в целях экономии, преимущественно в составе сплавов на её основе (латуни и бронзы — о них позже) или в качестве покрытий (кстати сейчас медное покрытие даже стало популярнее хрома, например на мотоциклах кастомах в стиле старой школы кастомайзинга — олдскул).

Но всё же чистую медь, даже для покрытий, сейчас используют редко, и поэтому не будем особо задерживаться на чистой меди и перейдём к её сплавам.

Латунь.

Как знают многие — это сплав меди с цинком. Причём цинк, в составе этого сплава, повышает прочность и вязкость, ну и что немаловажно — удешевляет сплав. Латунь широко используется из-за своей относительной мягкости, пластичности, так же она отлично обрабатывается резанием, хорошо поддаётся гибке, штамповке, протяжке (вытягиванию) отлично спаивается.

Выпускают латунь в виде болванок (отливок) листов, полос, прутков, труб и проволоки. А так как латунь (так же как и бронза), в отличии от меди имеет малый коэффициент трения, то из отливок (или из прутков) делают подшипники скольжения.

Так же довольно широко применяют латунь при изготовлении различных приборов. Ну и благодаря довольно высокой антикоррозийной стойкости латуни, её широко используют в сантехнике: различные втулки (сгоны, муфты) водопроводные краны, задвижки и т.п. А из тонких листов латуни изготавливают различные регулировочные прокладки.

Ну и кроме коррозионной стойкости латунь обладает ещё и отличной теплопроводностью и поэтому из неё (наряду с алюминием) делают радиаторы, из трубок делают трубки радиаторов и различные трубопроводы в промышленности.

Бронза.

Бронза — это сплав меди с алюминием, оловом, марганцем, кремнием, свинцом и другими металлами. Бронза более хрупкий и твёрдый материал, чем выше описанная латунь, но зато она имеет ещё более низкий коэффициент трения и поэтому чаще используется в подшипниках скольжения.

Наиболее качественная и ценная считается оловянистая бронза, которая имеет более полезные качества, так как олово в составе сплава повышает механические свойства бронзы (делает её менее хрупкой) и добавляет коррозионную стойкость бронзе, ну и ещё делает этот сплав ещё более скользким (повышает антифрикционные свойства). Из оловянистой бронзы изготавливают наиболее качественные и достаточно долговечные подшипники скольжения (наряду с баббитами).

Бронза отлично обрабатывается резанием и хорошо паяется, но она дороже латуни. Как было сказано выше, из бронзы чаще всего делают подшипники скольжения, различные втулки, а так же детали, работающие под давлением до 25 кг/см². Выпускают бронзу, как и латунь, в виде прутков, полос, проволоки, трубок, отливок и т.п.

Баббиты.

Эти сплавы обладают очень низким коэффициентом трения (если со смазкой то коэффициент трения всего 0,004 — 0,009) и довольно низкой температурой плавления (всего 240 — 320 градусов). И поэтому баббиты чаще всего используют для заливки трущихся поверхностей подшипников скольжения. А так как температура плавления баббитов достаточно низкая, то в двигателях их не используют, а чаще всего для подшипников скольжения коленвалов компрессоров.

В сплавах баббитов основной компонент — это олово и в самом качественном баббите марки Б83 содержится 83% олова. Так же были разработаны заменители баббитов (например Б16) с меньшим содержанием олова, которые отливают на свинцовой основе с добавками мышьяка и никеля — это БН и БТ и другие сплавы металлов.

Свинец.

Этот металл и сплавы на его основе (например припои) имеет относительно малую температуру плавления (327,46 °C) и серебристо-белый (с синеватым отливом) цвет. Обладает хорошей вязкостью (ковкостью) отличными литейными свойствами. Но он очень мягкий, легко режется острым ножом и даже царапается ногтем. Достаточно тяжёлый металл (имеет плотность 11,3415 г/см³, а с повышением температуры, плотность его падает.

Прочность этого металла очень маленькая (предел прочности на растяжение — 12—13 МПа (МН/м²) .Известен и применяется ещё с глубокой древности, так как имел небольшую температуру плавления и чаще применялся для отливки трубопроводов в Кремле и древнем Риме (там же в древнем Риме его производство достигало больших объёмов — около 80-ти тысяч тонн в год).

Свинец и его соединения токсичны и особенно ядовиты водорастворимые, например ацетат свинца, ну и летучие соединения, например, тетраэтилсвинец. А во времена отливки водопроводов в древнем Риме и Кремле никто не знал про вредность свинца и вода, проходящая по свинцовым трубопроводам, существенно сокращала жизнь людей.

Сейчас же основное использование свинца — это отливка решёток аккумуляторных батарей, а также он используется для изготовления листов (камер), защищающих от рентгеновского излучения в медицине. А сплавы свинца, сурьмы и олова используют в декоративном литье (затем фигурки покрывают медью), а так же для изготовления подшипников скольжения (см. выше баббиты) и для различных припоев для пайки.

Твёрдые сплавы металлов.

Это сплавы на основе тугоплавких карбидов вольфрама, ванадия, титана и эти сплавы отличаются высокой прочностью, твёрдостью и износоустойчивостью, даже при повышенных температурах. Применяют твёрдые сплавы чаще всего для изготовления рабочих частей режущего инструмента (токарных резцов, фрез и т.п.).

Кобальто-вольфрамовые твёрдые сплавы выпускают под маркой от ВК2, ВК3 и вплоть до ВК15. Цифры в маркировке указывают на процентное содержание кобальта в сплаве, а остальное как правило составляет карбид вольфрама.

Титано-вольфрамовые твёрдые сплавы цифры в маркировке указывают на процентное содержание кобальта и титана, а остальное составляет карбид вольфрама (Т5К10, Т15К6).

Вот вроде бы и всё. Конечно же в одной статье нереально описать всю массу полезных и интересных фактов, связанных с различными металлами и сплавами металлов, но всё же, надеюсь, что многие металловеды (материаловеды) простят меня, ведь нельзя объять необъятное, успехов всем!

ЛАТУНЬ С СИЛИКОНОМ (СПЛАВ С ПОКРЫТИЕМ)

Для припаивания железистых металлов и медных сплавов. Сварка с припоем сплавов, сталей, бронз, гальванизированных металлов. Производство труб, кузовные работы, обслуживание, скобяные работы, сельскохозяйственный инвентарь.

ИДЕАЛЬНО ПОДХОДИТ ДЛЯ:
Медных сплавов. Высокая сопротивляемость и эластичность. Отличная текучесть без выпаривания цинка на гальванизированные стали.

  • EN 1044: CU302
  • DIN 8513: L-CuZn39Sn
  • AWS A5-8: RB CuZn-A

ТЕХНИЧЕСКИЕ ДАННЫЕ

Химический состав(%): Cu:
59
Zn:
39,8
Si:
0,2

Другие

Механические свойства: Rm: 450 Н/мм2

A%: 35
Интервал плавления: 870 — 890 °C

 

Aрт. № Описание Длина Диаметр Кол-во
B130201 GAZOBRONZE С ПОКРЫТИЕМ 1 м 1,5 мм 174 шт
B130202 GAZOBRONZE С ПОКРЫТИЕМ 1 м 2 мм 120 шт
B130203 GAZOBRONZE С ПОКРЫТИЕМ 1 м 2,5 мм 80 шт
B130204 GAZOBRONZE С ПОКРЫТИЕМ 1 м 3 мм 60 шт
B130205 GAZOBRONZE С ПОКРЫТИЕМ 1 м 4 мм 40 шт

 DEOXIDIZER

Aрт. № Описание Длина Диаметр Кол-во
B150318 GAZOBRONZE COATED 0,5 м 2 мм 1 кг
B150319 GAZOBRONZE COATED 0,5 м 3 мм 1 кг

 

Информация по видам лома черных металлов

Наша компания принимает лом черных металлов всех категорий и классов по самым выгодным ценам в регионе. Обеспечиваем точное взвешивание и оперативную оплату удобными для клиента способами. Оказываем помощь при транспортировке крупных объемов, а также с оформлением необходимой сопроводительной документации.

Виды черного лома. Классификация и ключевые отличия.

Классификация осуществляется по составу отходов. Всего существует три общие группы, в которые входят:
  1. Отходы стали.
  2. Чугунный лом.
  3. Нержавейка.
К стальному лому относится вторичное сырье, в составе которого преобладает железо. Это могут быть различные изделия, части оборудования и машин, металлическая стружка, изношенные изделия и так далее.

Чугунный лом отличается от железного значительно более высоким содержанием углерода, за счет чего он является более хрупким. В отличие от стали чугун не обладает пластичностью и не склонен к деформациям. При резких механических нагрузках раскалывается на фрагменты.

Нержавейка – это вид стали, которая устойчива к воздействию коррозии за счет содержания в ее составе хрома. Отличается от железного и чугунного лома по отсутствию первичных признаков коррозии, то есть ржавчины характерного цвета.

Сортировка черных металлов

Одним из основных требований при приемке лома черных металлов является сортировка.

Ее цель – разделение отходов по:

  • габаритам;
  • группам;
  • классам;
  • видам;
  • качеству.
В соответствии с этими критериями формируется цена.

Правила приема

Приемка осуществляется в соответствии со следующими основными правилами:
  1. Отходы черных металлов принимаются партиями.
  2. Одна партия – это определенное количество отходов одного класса, поставленного на пункт приема в одной транспортной единице, и сопровождаемого одним документом о качестве вторсырья.
  3. В партии не должно содержаться сторонних предметов.
  4. Для формирования партии отходы предварительно должны быть отсортированы в соответствии с вышеприведенными принципами.
  5. Цена зависит от качества, вида, класса и степени засоренности.
  6. Оплата осуществляется в соответствии с массой и действующими тарифами.
  7. Крупные партии взвешиваются на промышленных весах с вычетом массы транспортного средства.
  8. Мелкие партии взвешиваются на профессиональных малогабаритных весах.
  9. В случае засоренности партии на ее вес делается скидка. Размеры определяются по фактической засоренности.
  10. Оплата осуществляется по факту взвешивания и согласования стоимости с клиентом.
Более детальную информацию по правилам работы нашего приемного пункта можно узнать, позвонив по указанному номеру телефона.

Транспортировка лома черных металлов

В соответствии с действующим законодательством для транспортировки лома черных металлов, состоящего из мелких бытовых отходов, сопроводительная документация не требуется.

Для перевозки крупных партий металлолома не бытового происхождения физическое лицо или юридическая организация обязаны обеспечить водителя транспортного средства или лицо, которое сопровождает партию лома до пункта приема, такими документами, как:

  1. Путевой лист.
  2. Транспортная накладная.
  3. Удостоверение о взрывобезопасности груза.
  4. Подтверждающий право собственности на перевозимый лом документ.
Детальную информацию про перевозку можно получить у наших специалистов.

Преимущества работы с нами

При обращении в нашу компанию для сдачи лома черных металлов вы получаете следующие выгоды:
  • возможность сдать лом черных металлов любой категории;
  • высокие цены на все классы отходов черных металлов;
  • точное взвешивание партий доставленного лома на сертифицированных весах;
  • разгрузка крупногабаритного лома при помощи спецоборудования;
  • оперативный расчет за вторсырье в любых объемах;
  • вывоз крупных партий лома нашим транспортом.
Поможем решить проблему с транспортировкой. Предоставим требующуюся для перевозки сопроводительную документацию.

1. Стальные канаты и проволока 13А

Обозначение по

ГОСТ 2787-75

Обозначения по данному СТО СМК

Требования к габаритным размерам и массе

2А1

Габаритный кусковой лом. Габариты не более 650х350х250 мм. Толщина не менее 4 мм, насыпная плотность не менее 0,8 т/м3. Засоренность безвредными примесями не более 1% по массе.

2АТ

Рельсы, разделанные колесные пары. Габариты не более 1000х500х500 мм.   Засоренность безвредными примесями не более 0,5% по массе. Содержание хрома, никеля, меди не более 0,05% по массе каждого.

   Габаритный кусковой лом стальной углеродистый лом без примесей доменного присада, стального скрапа. Остальные требования согласно ГОСТ 2787-75.

3А1

Габаритный кусковой лом стальной углеродистый лом без примесей доменного присада, стального скрапа. Габариты не более 800х500х500 мм. Толщина не менее 4 мм, допускается 20% от массы партии   с толщиной не менее 2 мм. Засоренность безвредными примесями не более 1,5% по массе.

3АЕ

Габаритный кусковой стальной углеродистый лом без примесей доменного присада, стального скрапа. Габариты не более 1500х500х500 мм. Толщина не менее 4 мм, допускается 10% от массы партии с толщиной не менее 2 мм. Диаметр труб не более 150мм. Трубы с большим диаметром должны быть сплющены, либо разрезаны по образующей. Засоренность безвредными примесями не более 1,5% по массе.

3АН

Габаритный лом, полученный от механической ножничной резки. Габариты не более 800х500х500 мм, без ограничений по толщине. Засоренность безвредными примесями не более 2,2% по массе. Насыпная плотность не менее 0,6 т/м3.

Пакеты из чистовых листовых, полосовых и сортовых металлоотходов. Пакеты должны иметь размеры не более 2000х1050х750 мм и плотность не менее 1500 кг/м3. Засоренность безвредными примесями не более 1,0% по массе. Не допускается наличие лома и отходов цветных металлов, углеродистая сталь не должна смешиваться с легированной. Металл не должен быть луженым, эмалированным, покрытым цветными металлами, горелым, разъеденным кислотами, проржавленным. Углеродистая стружка не допускается. Легированная стружка допускается в пакетах из легированных металлоотходов. Масса пакета не менее 40 кг.

8А1

Пакеты из легковесных стальных отходов и лома плотностью не менее 1500 кг/м3. Пакеты должны иметь размеры не более 800х800х800 мм. Засоренность безвредными примесями не более 1,5% по массе. Не допускается наличие лома и отходов цветных металлов, углеродистая сталь не должна смешиваться с легированной. Металл не должен быть луженым, эмалированным, покрытым цветными металлами, горелым, разъеденным кислотами, проржавленным.

 

8А2

Пакеты из чистых листовых, полосовых и сортовых металлоотходов производства Тольяттинского автозавода и ему аналогичных. Габариты не более 800х800х800 мм. Засоренность безвредными примесями не более 0,5% по массе. Содержание хрома, никеля, меди не более 0,05% по массе каждого.

8АБ

Пакеты из чистых листовых, полосовых и сортовых металлоотходов. Габариты не более 800х800х1500 мм. Засоренность безвредными примесями не более 0,5% по массе. Содержание хрома, никеля, меди не более 0,05% по массе каждого.

10А

10А

Пакеты из легковесных стальных отходов и лома плотностью не менее 1000 кг/м3 (допускается плотность не менее 0,7 т/м3 в количестве не более 10% от массы партии). Пакеты должны иметь размеры не более    2000х1050х750 мм. Засоренность безвредными примесями не более 2,0% по массе. Допускается стружка. Не допускается наличие лома и отходов цветных металлов, углеродистая сталь не должна смешиваться с легированной. Металл не должен быть луженным, эмалированным, покрытым цветными металлами, горелым, разъеденным кислотами, проржавленным. Масса пакета не менее 40 кг.

 

ОАО «НЛМК» Техническими условиями №2 от 01.05.2014 г.   ввел следующую классификацию ломов, принимаемых предприятием на переплав:

Обозначение

лома

Требования к размерам и массе

Габаритный стальной лом

ГОСТ 2787-75. Габаритный кусковой стальной углеродистый лом без примесей чугуна, стружки, проволоки, доменного присада, тросов, стального скрапа. Габариты: 800х500х500 мм, толщина от 6 мм, диаметр труб до 150 мм. Засоренность безвредными примесями не более 1,5%.

3А2

Габаритный кусковой стальной углеродистый лом без примеси чугуна, стружки, проволоки, доменного присада, тросов, скрапа. Габариты:   1500х500х500 мм, толщина от 4 мм, диаметр труб до 150 мм. Засоренность безвредными примесями не более 2%.

9А, 10А*

ГОСТ 2787-75. Допускается наличие оцинкованного лома в количестве не более 15% от массы партии. Масса пакетов должна быть не менее 40 кг, при плотности не менее 700 кг/м3. Засоренность безвредными примесями не более 2%.

8А *

Состав, степень чистоты, габариты и масса согласно ГОСТ 2787-75.

Засоренность безвредными примесями не более 0,5%.

Лом из-под пресс-ножниц

3АН

Стальной углеродистый лом, полученный от механической ножничной резки. Габариты: не более 800х500х500 мм,    толщина не регламентируется. Засоренность безвредными примесями не более 2%. Насыпная плотность не менее 0,65 т/м3.

3А2НЦ*

Оцинкованный стальной углеродистый лом, полученный от ножничной резки с предварительной подпрессовкой. Габариты: не более 1500х500х500 мм,    толщина не регламентируется. Засоренность безвредными примесями не более 2%

Негабаритный стальной лом

5А*

ГОСТ 2787-75. Негабаритный кусковой стальной углеродистый лом без примесей чугуна, стружки, проволоки, доменного присада, тросов, скрапа. Негабаритные стальные трубы очищенные от вредных примесей. Габариты не лимитированы, толщина от 6 мм, вес куска до 10 тн. Засоренность безвредными примесями не более 3%

5А1*

Обрезь и отходы судовой стали:

Негабаритный кусковой стальной углеродистый лом без примесей чугуна, стружки, проволоки, доменного присада, тросов, скрапа. Негабаритные стальные трубы очищенные от вредных примесей. Габариты не лимитированы, толщина от 6 мм, вес куска до 5 тн. Засоренность безвредными примесями не более 0,5%.

Лом для пакетирования

11А, 12А*

ГОСТ 2787-75. Стальные листовые, полосовые и сортовые отходы, кровля, легковесный промышленный и бытовой лом, проволока. Габариты не лимитированы, толщина менее 4 мм. Засоренность безвредными примесями не более 2%.

12А1*

Обрези стали 08ПС, 08Ю, 2215П. Габариты не лимитированы, толщина менее 4 мм. Засоренность безвредными примесями не более 0,5%.

Обрезь арматуры. Габариты: 800х500х500 мм, толщина от 4 мм. Засоренность безвредными примесями не более 0,5%.

Стальная стружка

14А*

ГОСТ 2787-75.

Железнодорожный лом

ЖДЛ 1

Рельсы нерегламентированных размеров, колесные пары, детали верхнего строения ж/д путей, тележки. Резаные полувагоны (рамы, сцепки, борта), резаные платформы, цистерны. Габариты не лимитированы, засоренность безвредными примесями не более 1%.    

Шредированный лом

Шрот*

Дробленные и резанные на шредерной установке стальные лом и отходы: кровля, легковесный промышленный и бытовой лом; листовые, полосовые и сортовые отходы. Допускается наличие стального оцинкованного лома. Толщина не более 6 мм. Засоренность безвредными примесями не более 0,5%.    

Легированный стальной лом

2-5Б22*

ГОСТ 2787-75. Засоренность безвредными примесями не более 2%.

* Лом и отходы черных металлов видов 8А, 9А, 10А, 3А2НЦ, 5А, 5А1, 11А, 12А, 12А1, 14А, Шрот, 2-5Б22 возможны к поставке только после письменного согласования с ООО «Вторчермет НЛМК».

 

ЧУГУННЫЕ ЛОМА И ОТХОДЫ,

ПОДГОТОВЛЕННЫЕ ДЛЯ ПЕРЕПЛАВА 17А, 18А, 19А .

Общие требования к кусковому лому 17А, 18А, 19А   для переплава:

1. Не допускается наличие лома и отходов цветных металлов.

2. Углеродистые лом и отходы не должны смешиваться с легированными.

3. Металл не должен быть горелым, разъеденным кислотами и проржавленным (налет ржавчины допускается).

4. Засоренность безвредными примесями не должна превышать 2% по массе.

5. Допускается примесь трудноотделимой стали не более 5% по массе.

6. Куски массой менее 0,5 кг допускаются в количестве не более 2% от массы партии.

Отличаются лома 17А, 18А, 19А составом, габаритами и массой куска.

Вид лома

Состав

Максимальный размер куска,

см

Масса куска,                         

 

 

кг

Другие  

требования

17А

Куски машинных чугунных отливок, а также чушки вторичного литейного чугуна.

30

20-0,5

нет

18А

Куски чугунных изложниц и поддонов.

30

40-0,5

По требованию потребителя разрешается поставка кусков повышенных габаритов и массы.

19А

Куски чугунных отливок с повышенным и высоким содержанием фосфора (печных, посудных, художественных). Куски ковкого чугуна, чугунные трубы.

30

20-0,5

нет

 

СКРАП СТАЛЬНОЙ

Обозначение по ГОСТ 2787-75

Обозначение по ТТ 177-01-2008

Требования к габаритным размерам и массе*

1 Габаритный стальной скрап и шлак металлургический

25 А

 

25А1

Крупность кусков скрапа не более 1000*800*300 мм.

Кусков с максимальным линейным размером менее 300 мм — не более 10% от массы партии.

Кусков скрапа с размерами не более 1500*1000*800 мм — не более 10% от массы партии.

Масса куска – не более 1,5 тонн. Допускаются куски массой до 3-х тонн в количестве – не более 10% от массы партии.

Массовая доля неметаллической составляющей скрапа (шлак), загружаемой в дуговую печь – не более 15%.

Масса неметаллической составляющей скрапа (шлак, бой огнеупоров, ветошь, древесные отходы и др.) выгрузка которой из вагонов магнитной шайбой невозможна, не более 5%.

2 Негабаритный стальной скрап и шлак металлургический

26 А

26А1

Количество кусков скрапа с максимальным линейным размером свыше 1000 мм – более 10 % от массы партии.

Кусков скрапа с максимальным линейным размером свыше 1500 мм – не более 10% от массы партии.

Масса куска – не более 10 тонн.

Массовая доля неметаллической составляющей скрапа (шлак), загружаемой в дуговую печь – не более 20%.

Масса неметаллической составляющей скрапа (шлак, бой огнеупоров, ветошь, древесные отходы и др.) выгрузка которой из вагонов магнитной шайбой невозможна, не более 5%.

5. КЛАССИФИКАЦИЯ ВТОРИЧНЫХ ЦВЕТНЫХ МЕТАЛЛОВ.

Алюминий и его сплавы

Группа

Характеристика группы

Показатель

Норма

А1

Чистые отходы из нелегированного алюминия от производства проката, профилей, труб, листов, лент и т.д.

Марки А85, А8, А7, А7Е, А6, А5, А0, АД00, АД0, АД1, АД и др.

Содержание металла по массе, %, не менее

Засоренность безвредными примесями по массе, % не более

Засоренность железом

 

 

Толщина, мм, не менее

98

 

2

Не допускается

 

1

А2

Лом нелегированного алюминия — провода, голые жилы кабелей и шнуров, шины распределительных устройств, трансформаторов, выпрямители, теплообменники холодильников.

Марки А85, А8, А7, А7Е, А6, А5, А0, АД00, АД0, АД1, АД и др.

Содержание металла по массе, %, не менее

Засоренность безвредными примесями по массе, % не более

В том числе железом, %, не более

 

 

 

97

 

3

 

2

А26

Лом кабельных изделий

Содержание металла по массе, %, не менее

Засоренность безвредными примесями по массе, % не более

Засоренность железом

 

85

 

15

 

Не допускается

А27

Лом бытовой с определенным химическим составом

Содержание металла по массе, %, не менее

Засоренность безвредными примесями по массе, % не более

Засоренность железом

90

 

10

 

1

А37

Лом из-под напитков с покрытием бумагой, без наличия остатков, грязи и прочих примесей.

Марки АМг2, АМг АДЗ1, АД0

Содержание металла по массе, %, не менее

Содержание меди по массе, %, не более

Засоренность безвредными примесями по массе, %, не более

Засоренность железом

 

96

 

0,2

 

4

 

Не допускается

А32

Дробленный лом алюминиевых банок из-под напитков отмагниченный, без пластиковых банок, стекла и дерева.

Марки АМг2, АДЗ 1, АД0 и др.

Содержание металла по массе, %, не менее

Засоренность свинцом

 

Засоренность железом по массе, %, не более

Засоренность безвредными примесями, включая влагу, по массе, %, не более

Лом с большей засоренностью поставляется по согласованию между продавцом и покупателем.

95

 

Не допускается

0,2

5

 

Рассмотрим таблицу 7 для лома и отходов меди.

В этой таблице приведены требования к 13 видам лома и отходам меди.

Выписка из табл. 7

Группа

Характеристика группы

Показатель

Норма

М1

Медные проводники тока: проволока и шины чистые без покрытий и изоляций

Марки: М00 М001к МО    Мок   М1   М1к

Увязанные в бухтах, в мягких контейнерах или пакетах.

Не содержит неметаллических примесей, других металлов. Без сгоревших хрупких участков, блестящая поверхность, без влаги и масла.

Выход металла, %, не менее

Содержание меди, %, не менее

Засоренность, %, не более

Диаметр проволоки, мм, не менее

Масса пакета, кг, не более   

 

 

 

 

 

 

98

99,9

2

0,3

250

М8

Стружка чистой меди

Марки: М00, М0, М1, М2, М3

Без наличия других металлов.

Выход металла, %, не менее

Засоренность, % , не более

В том числе маслом и водой, %, не более

Содержание меди, % ,не менее

 

98

2

1,5

 

99,5

М9

Лом электродвигателей марки: М0, М1, М2, М3

По соглашению сторон

М13

Лом плакированная другим цветным металлом

По соглашению сторон

 

 

Рассмотрим таблицу 8 для лома и отходов латуни.

В этой таблице приведены требования к 22 группам лома и отходам латуни.

Выписка из таблицы 8

 

Группа

Характеристика группы

Показатель

Норма

Л1

Кусковые отходы двойных латуней: обрезь, брак листов, лент, полос, прутков, слитков, трубы и трубки.

Содержание других металлов и сплавов не допускается.

В бухтах, мягких контейнерах или пакетах.

Без воды и масла.

Содержание металлов, %, не менее

Содержание меди, %, не менее

Содержание цинка, %, не более

Содержание свинца, %, не более

Засоренность неметаллическими материалами, %, не более

Масса отдельных кусков, кг, не более

Масса пакета, кг, не более

 

 

 

 

 

98

60

37

0,07

2

 

100

250

Марки: Л96, Л90, Л85, Л80, Л70, Л68, Л63, Л60

Л20

Стружка латуни, легированной кремнием.

Содержание других металлов и сплавов не допускается.

Содержание металлов, %, не менее

Засоренность, %, не более

в том числе механическими примесями черных металлов, %, не более

Содержание воды и масла, %, не более

 

 

95

5

 

0,5

2,5

Марки: ЛК80-3, ЛК80-3Л, а также ЛКС80-3-3

Л21

Стружка латуни смешанная

Содержание других металлов и сплавов не допускается.

Поставка по соглашению сторон.

Содержание меди, %, не менее

Содержание металлов, %, не менее

Засоренность, %, не более

в том числе механическими примесями черных металлов, %, не более

Содержание воды и масла, %, не более

 

 

 

50

95

5

 

0,5

2,5

Л22

Лом и отходы специальных латуней: листы, полосы, ленты, прутки, трубы, проволока, манометрические трубки, конденсаторные трубы в морском судостроении, сетка бумагоделательных машин.

Содержание других металлов и сплавов не допускается.

 

 

 

 

 

 

 

 

 

Рассмотрим таблицу 9 для лома и отходов бронзы.

В этой таблице приведены требования к 14 видам лома и отходам бронзы.

Выписка из табл. 9

Группа

Характеристика

Показатель

Норма

Бр1

Кусковые отходы бронз с высоким содержанием олова: проволока, прутки, ленты, сетки, полосы, подшипниковые детали, трубки-заготовки, трубки для КИП.

 

Марки: БрОС, БрОФ, БрОЦС

Содержание других металлов и сплавов не допускается.

Содержание металлов, %, не менее

Засоренность, %, не более

Масса отдельных кусков, кг, не более

Содержание олова, %, не более

 

 

97

 

3

100

8,5

Бр3

Кусковые отходы бронз безоловяннх: плиты, листы,полосы, ленты, трубы, проволока, прутки, поковки. Марки: БрА5, БрА7, БрАЖ

Содержание других металлов и сплавов не допускается.

Содержание металлов, %, не менее

Засоренность, % масс. не более

Масса отдельных кусков, кг, не более  

 

 

97

3

100

Бр14

Лом и кусковые отходы смешанные

 

По соглашению сторон.

Содержание металлов, %, не менее

Засоренность, %, не более

в том числе железом, %, не более

 

60

40

3


Самые интересные металлы / Хабр


Кто не слушает металл — тому бог ума не дал!

— Народное творчество

Привет, %username%.

gjf снова на связи. Сегодня буду совсем краток, потому что через шесть часов вставать и ехать.

А рассказать я сегодня хочу о металле. Но не о том, который музыка, — о том мы можем поговорить как-нибудь за кружечкой пива, а не на Хабре. И даже не о металле — а о металлах! И рассказать я хочу о тех металлах, которые меня в жизни так или иначе поразили своими свойствами.

Поскольку все участники хит-парада отличаются какими-то своими суперспособностями, то мест и победителей не будет. Будет — металлическая десятка! Так что порядковый номер ничего не означает.

Поехали.

1. Ртуть

Ртуть — самый жидкий металл: температура её плавления составляет -39 °C. О том, что она токсична — и даже очень —

я уже писал

, а потому повторяться не буду.

С древних времён на ртуть разве что не молились — ещё бы, «жидкое серебро»! Алхимики считали, что именно во ртути где-то прячется знаменитый философский камень, например Джабир ибн Хайян считал, что раз ртуть — это жидкий металл, то она — «абсолютна»: она свободна от любых примесей, присущих твёрдым металлам. Сера — другой предмет восхищения Хайяна — элемент огня, он способен давать чистое «абсолютное» пламя, а потому все остальные металлы (а поскольку это был VIII век — их было негусто: семь) образованы из ртути и серы.

Что в VIII веке, что сейчас — если смешать ртуть и серу, то получится чёрный сульфид ртути (и это, кстати, один из способов дезактивации пролитой ртути) — но уж никак не металл. Эту досадную неудачу Хайян объяснял тем, что все тупые не хватает некоего «созревателя», который из чёрной ерунды приведёт к получению металла. И конечно все бросились искать «созреватель», чтобы получить золото. История поиска философского камня официально объявлена открытой.

%username%, ты вот сейчас смеёшься над алхимиками — но ведь они-таки добились своего! В 1947 году американскими физиками при бета-распаде изотопа Hg-197 получен единственный устойчивый изотоп золота Au-197. Из 100 мг ртути добыли целых 35 мкг золота — и они сейчас красуются в Чикагском музее науки и промышленности. Так что алхимики были правы — ведь можно! Только, блин, дорого…

Кстати, единственным алхимиком, который не верил в возможность получения золота из других металлов был Абу Али Хусейн ибн Абдуллах ибн аль-Хасан ибн Али ибн Сина — а для тёмных неверных — просто Авиценна.

Между прочим, со ртутью по своему виду очень соперничает другой металл — галлий. Его температура плавления 29 °C, в школе мне показывали эффектный фокус: на руку кладётся кусок какого-то металла…

.. и вот что получается

Кстати, галлий сейчас можно купить на алике, чтобы показывать такой фокус. Не знаю, правда, проедет ли он таможню.

2. Титан

Суровый титан — это тебе не ртутные сопли! Это — самый твёрдый металл! Ну в моём детстве и юношестве титаном писали на всех этих стёклах в общественном транспорте. Потому что царапал — и мелкой металлической пылью окрашивал.

Все знают, что титан благодаря твёрдости и лёгкости используют в авиации. Расскажу о некоторых интересных применениях.

Будучи нагретым, титан начинает поглощать разные газы — кислород, хлор и даже азот. Это используют в установках очистки инертных газов (аргона, например) — его продувают через трубки, заполненные титановой губкой и нагретые до 500-600 °C. Кстати, при этой температуре титановая губка взаимодействует с водой — кислород поглощается, водород отдаётся, но обычно водород в инертных газах никого не беспокоит, в отличие от воды.

Белый диоксид титана TiO2 используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171. Кстати, при производстве диоксида титана обязательно контролируют его элементный состав — но вовсе не для того, чтобы снизить примеси, а чтобы добавить «белизны»: нужно, чтобы окрашивающих элементов — железа, хрома, меди и т.д. — было поменьше.

Карбид титана, диборид титана, карбонитрид титана — конкуренты карбида вольфрама по твёрдости. Недостаток — они его легче.

Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, так как имеет цвет, похожий на золото. Все эти «медицинские сплавы», похожие на золото — это покрытие нитридом титана.

Кстати, упорные учёные недавно сделали всё-таки сплав, который твёрже титана! Только чтобы этого добиться — пришлось смешать палладий, кремний, фосфор, германий и серебро. Штука получилась недешёвая, а потому опять победил титан.

3. Вольфрам

Вольфрам — тоже противоположность ртути: самый тугоплавкий металл с температурой плавления 3422 °C. Он известен ещё с XVI века, правда, известен не сам металл, а минерал вольфрамит, в котором содержится вольфрам. Кстати, название Wolf Rahm на языке суровых немцев означает «волчьи сливки»: немцы, которые плавили олово, очень не любили примеси вольфрамита, который мешал плавке, переводя олово в пену шлаков («пожирал олово как волк овцу»). Сам металл уже выделили позже, примерно через 200 лет.

То, что на фото — не вольфрам на самом деле, а карбид вольфрама, так что если у тебя на руке такое кольцо, %username%, то не сильно задавайся. Карбид вольфрама — тяжёлое и крайне твёрдое соединение — а потому используется во всяких деталях, которыми бьют, кстати «победит» — это 90% карбида вольфрама. А ещё карбид вольфрама добрые люди добавляют в качестве наконечника бронебойных снарядов и пуль. Но не только его, позже расскажу про другой металл.

Кстати, хоть вольфрам и тяжёлый — но несмотря на бо́льшую плотность по сравнению с традиционным и более дешёвым свинцом, радиационная защита из вольфрама оказывается менее тяжёлой при равных защитных свойствах или более эффективной при равном весе. Из-за тугоплавкости и твёрдости вольфрама, затрудняющих его обработку, в таких случаях используются более пластичные сплавы вольфрама с добавлением других металлов либо взвесь порошкообразного вольфрама (или его соединений) в полимерной основе. Выходит легче, эффективнее — но только дороже. Так что в случае фолаута, %username%, бери себе вольфрамовую броню!

Кстати, на своём «вечном кольце» я умудрился какой-то химией поставить пятно — и даже не знаю, чем. Так что «вечное» оно только у обычных людей )))

4. Уран

Единственный природный металл, который используют, как топливо, и при этом используется без остатка, буквально на атомном уровне.

Когда я был ещё школьником, но был вхож в университет (не скажу почему!), то меня всегда смешила реакция иностранных студентов, когда им в микроскоп показывали кристаллы уранил-ацетата натрия. Ну есть такая качественная реакция. Когда иностранцам говорили слово «уранил» — их сдувало с этажа. Все смеялись.

Мне смешно и грустно, что теперь и большая часть наших людей тоже считают, что уран- страшен, опасен и ужасен. Падение образования налицо.

На самом деле ещё в древнейшие времена природная окись урана использовалась для изготовления жёлтой посуды. Так, возле Неаполя найден осколок жёлтого стекла, содержащий 1 % оксида урана и датируемый 79 годом н. э. Он не светится в темноте и не фонит. Я был в Жёлтых Водах на Украине, где добывают урановый концентрат. Никто там не светится и не фонит. А разгадка проста: природный уран слаборадиоактивен — не более, чем граниты и базальты, а также терриконы и метрополитен. Тот уран, который УРАН — это изотоп U-235, которого в природе всего 0,7204%. Его так мало, что для ядерщиков нужно выделять и концентрировать этот изотоп («обогащать») — так просто работать реактор не будет.

Кстати, раньше в природе U-235 было больше — просто со временем он распался. И поскольку его было больше — ядерный реактор сделать можно было прямо на коленке. В прямом смысле. Так и произошло в Габоне на месторождении Окло примерно 2 миллиарда лет назад: через руду бежала вода, вода — естественный замедлитель нейтронов, которые вылетают при распаде урана-235 — в итоге энергии нейтронов было как раз столько, сколько нужно для захвата ядром урана-235 — и пошла-поехала цепная реакция. И уранчик горел себе несколько сотен лет, пока не выгорел…

Обнаружили это значительно позже, в 1972 году, когда на урановой обогатительной фабрике в Пьерлате (Франция) во время анализа урана из Окло было найдено отклонение от нормы изотопного состава урана. Содержание изотопа U-235 составило 0,717% вместо обычных 0,720%. Уран — не колбаса, тут недовес строго карается: все ядерные объекты подвергаются жёсткому контролю с целью недопущения незаконного использования расщепляющихся материалов в военных целях. А потому учёные стали исследовать, нашли ещё пару элементов, типа неодима и рутения, и поняли — U-235 украли до нас просто выгорел, как в реакторе. То есть ядерный реактор природа изобрела задолго до нас. Впрочем, как и всё.

Обеднённый уран (это когда 235-й забрали и отдали атомщикам, а остался U-238) — тяжёлый и твёрдый, напоминает чем-то по свойствам вольфрам, а потому — точно так же используется там, где надо бить. Об этом есть история из бывшей Югославии: там использовали бронебойные снаряды с бойком, содержащим уран. Проблемы у населения были, но вовсе не из-за радиации: мелкая урановая пыль попадала в лёгкие, усваивалась — и давала плоды: уран токсичен для почек. Вот так-то — и нечего бояться уранил-ацетата! Правда, законам РФ это не указ — а потому вечные проблемы с заездом химических реактивов, содержащих уран — потому как для чиновника уран бывает только один.

А ещё есть урановое стекло: небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию.

И это, блин, красиво!

Кстати, очень полезно предложить гостям яблоки или салатик, а потом включить немножко ультрафиолета и показать, как красиво. Когда все закончат восторгаться — небрежно так бросить: «Ну да, ещё бы, это же урановое стекло…» И откусить кусочек яблочка с вазы…

5. Осмий

Ну раз уж поговорили о тяжёлых уранах-вольфрамах, то настало время назвать самый тяжёлый металл вообще — это осмий. Его плотность составляет 22,62 г/см

3

!

Однако осмию, будучи самым тяжёлым, ничего не мешает быть ещё и летучим: на воздухе он постепенно окисляется до OsO4, который летучий — и кстати, очень ядовитый. Да — это элемент платиновой группы, но он вполне себе окисляется. Название «осмий» происходит от древнегреческого ὀσμή — «запах» — именно благодаря этому: химические реакции растворения щелочного сплава осмиридия (нерастворимого остатка платины в царской водке) в воде или кислоте сопровождаются выделением неприятного, стойкого запаха OsO4, раздражающего горло, похожего на запах хлора или гнилой редьки. Этот запах почувствовал Смитсон Теннант (о нём позже), работавший с осмиридием — и так и назвал металл. И знаю я, что осмий должен быть в порошке и его нужно греть, чтобы процесс пошёл интенсивно — но в любом случае я не стремлюсь долго находиться рядом с этим металлом.

Кстати, есть ещё такой изотоп Os-187. В природе его очень мало, а потому из осмия его выделяют на центрифугах путем масс-сепарации — прямо как уран. Разделения ждут 9 месяцев — да-да, вполне уже можно родить. А потому Os-187 — один из самых дорогих металлов, именно его содержание обуславливает рыночную цену природного осмия. Но он не самый дорогой, о самом расскажу ниже.

6. Иридий

Раз уж заговорили о платиновой группе, то стоит ещё вспомнить об иридии. Осмий отнял у иридия звание самого тяжёлого металла — но разошлись в копейках: плотность иридия 22,53 г/см

3

. Осмий с иридием даже открыты были вместе в 1803 году английским химиком С. Теннантом — оба в качестве примесей присутствовали в природной платине, доставленной из Южной Америки. Теннант был первым среди нескольких учёных, кому удалось получить в достаточном количестве нерастворимый остаток после воздействия на платину царской водки и определить в нём ранее неизвестные металлы.

Но в отличие от осмия, иридий — самый, блин, стойкий металл: в виде слитка он не растворяется ни в каких кислотах и их смесях! Вообще! Даже грозный фтор берёт его только при 400-450 °C. Чтобы всё-таки растворить иридий, приходится его сплавлять с щелочами — да ещё желательно в токе кислорода.

Механическая и химическая прочность иридия используется в Палате мер и весов — из платиноиридиевого сплава изготовлен эталон килограмма.

В настоящий момент иридий не является банковским металлом, но и в этом уже есть сдвиги: в 2013 году иридий впервые в мире был применён в изготовлении официальных монет Национальным банком Руанды, который выпустил монету из чистого металла 999-й пробы. Иридиевая монета была выпущена номиналом 10 руандийских франков. И чёрт — я бы хотел такую монету!

Кстати, я в глубокой молодости в «Юном технике» как-то прочитал какой-то фантастический рассказ, когда паренёк к успеху шёл смог наменять песок на иридий по курсу 1:1 с какими-то там инопланетянами в подвале. Ну им видите ли кремний был нужен! Название и автора рассказа уже и не вспомню. спасибо Wesha — напомнил: В.Шибаев. Кабель «оттуда».

7. Золото

Да ну его — все видели



В жизни часто бывает, что есть чемпион фактический и формальный. Если иридий — фактический чемпион по химической стойкости, то золото — формальный: это самый электроотрицательный металл, 2,54 по шкале Полинга. Но это не мешает золоту растворяться в смесях кислот, так что как обычно — лавры достались тому, кто побогаче.

И действительно, в настоящий момент, благодаря тому, что Китай и РФ уходят от политики накопления золотовалютного запаса в долларах США к политике накопления собственно золота, золото — самый дорогой банковский металл: по цене он давно обогнал платину — да и вообще всю платиновую группу. Так что храни деньги в сберегательной кассе золоте, %username%!

Поскольку алхимический способ добычи золота показал свою дороговизну, получают этот металл на аффинажных заводах. А монетки делают уже на монетных дворах. Так вот, как человек, побывавший и там и там, могу сказать: работники подобных предприятий при посещении зоны, где есть драгметалл, либо переодеваются — и на рабочей одежде нет ни единой булавки или скрепки — рамки на проходной совсем не такие, как в аэропортах, там всё жёстче. Или действует так называемый «голый режим» — да-да, ты понял правильно: проходная для мальчиков и проходная для девочек — оденетесь уже внутри. Если у тебя имплант из металла — куча справок, куча разрешений, каждый раз индивидуально проверяют, что имплант на месте, где должен быть.

Кстати, а как ты думаешь — как организованы проходные на банкнотном дворе? Бумажки же не звенят на рамках!

Ответ тут, но подумай чуток сам

После работы не выпускают никого, включая руководство, пока не посчитают всю продукцию. Да — всё строго. Зато никто не против, когда в трудные времена зарплату выдавали продукцией.


8. Литий

В отличие от тяжёлых осмиев-иридиев литий — самый лёгкий металл, его плотность всего 0,534 г/см

3

. Это — щелочной металл, но самый неактивный из всей группы: в воде не взрывается, а спокойно взаимодействует, на воздухе тоже не сильно окисляется, да и поджечь его непросто: после 100 °C так хорошо покрывается оксидом, что дальше и не окисляется. Поэтому литий — единственный щелочной металл, который не хранят в керосине — зачем, если он достаточно инертный? И это к счастью — из-за своей низкой плотности литий бы в керосине плавал.

Природный литий состоит из двух изотопов: Li-6 и Li-7. Поскольку сам атом так мал, то лишний нейтрон значимо влияет на радиус орбитали и энергию возбуждения электрона, а потому обычный атомный спектр этих двух изотопов отличается — следовательно, возможно определять их даже без всяких масс-спектрометров — и это единственное исключение в природе! Оба изотопа очень важны в ядерной энергетике, кстати, дейтерид Li-6 используется как термоядерный порох в термоядерном оружии — и больше я не скажу ни слова на эту тему!

Литий также используют психиатры в качестве нормометика для лечения и профилактики маний. Когда я студентом подрабатывал на кафедре, к нам приходила тётенька с плазмой крови, в которой надо было определять литий. С какого-то раза я взял и полез в литературу (интернета ещё не было), чтобы понять, зачем там вообще литий определять? И узнал… Со следующего визита я так невзначай спросил тётю, а чья кровь вообще была? Когда она ответила, что её, я больше старался с ней лично не встречаться.

Ну то так — литий и литий, он даже в воде иногда определяется. Кстати, во Львове в воде его довольно много.

Да и кстати — с ростом популярности электромобилей, портативных девайсов и всего, что работает на литий-содержащих аккумуляторах, есть мнение, что цена на литий довольно быстро вырастет. Так что может деньги лучше хранить не в золоте, а в литии. Но это неточно, особенно после того, как на рынок лития вышла ещё и Австралия.

9. Франций

У франция целый набор титулов. Ну во-первых, франций — самый редкий металл. Всё его содержание — полностью радиогенное: он существует как промежуточный продукт распада урана-235 и тория-232. Общее содержание франция в земной коре оценивается в 340 граммов. Так что пятно на картинке выше — это не фото чёрной дыры в анфас, а около 200 000 атомов франция в магнитно-оптической ловушке. Все изотопы франция радиоактивны, самый долгоживущий из изотопов — Fr-223 — имеет период полураспада 22,3 минуты. Потому франция так и мало.

Тем не менее, франций имеет самую низкую электроотрицательность из всех элементов, известных в настоящее время, — 0,7 по шкале Полинга. Соответственно, франций является и самым химически активным щелочным металлом и образует самую сильную щёлочь — гидроксид франция FrOH. И не спрашивай, %username%, как это всё определяли с элементом, которого пшик — да маленько, и которого каждые 22,3 минуты становится ещё в два раза меньше, а исследователь светится сам всё ярче. А потому всё это интересно и занимательно, но франций практически нигде не используется.

10. Калифорний

/>


Калифорния в этом мире нет совсем, а производят его в двух местах: Димитровграде в РФ и Окриджской национальной лаборатории в США. Для производства одного грамма калифорния плутоний или кюрий подвергают длительному нейтронному облучению в ядерном реакторе — от 8 месяцев до 1,5 лет. Вся линейка распадов выглядит следующим образом: Плутоний-Америций-Кюрий-Берклий-Калифорний. Калифорний-252 является конечным результатом цепочки — этот элемент невозможно превратить в более тяжелый изотоп, так как его ядро

как бы говорит «спасибо, наелось»

слабо откликается на воздействие нейтронами.

На пути преобразования плутония в калифорний из 100% ядер распадается 99,7%. Лишь 0,3% ядер удерживается от распада и проходит до конца весь этап. А ещё продукт нужно выделить! Выделение изотопа происходит методом экстракции, экстракционной хроматографии либо вследствие ионного обмена. Чтобы придать ему металлический вид, производится восстановительная реакция.

На получение одного грамма калифорния-252 затрачивается 10 килограммов плутония-239.

Ежегодное количество добываемого калифорния-252 составляет 40-80 микрограмм, а по оценкам специалистов мировой запас калифорния составляет не более 8 граммов. Поэтому калифорний, а точнее — калифорний-252 – самый дорогой в мире промышленный металл, стоимость его одного грамма в разные годы варьировала от 6,5 до 27 миллионов долларов.

Логичный вопрос: а кому он вообще нужен? Цепь из него на шею не сделаешь, любимой в виде кольца не подаришь. Дело в том, что Cf-252 имеет высокий коэффициент размножения нейтронов (выше 3). Грамм Cf-252 испускает около 3⋅1012 нейтронов в секунду. Да, потенциально можно сделать атомную бомбу, но из урана и того же плутония дешевле, поэтому сам калифорний используется как источник нейтронов в различных исследованиях, в том числе в промышленных поточных нейтронно-активационных анализаторах на конвейерной ленте. Кстати, %username%, я лично видел этот калифорний в виде маленькой ампулки, которую вытащили из здоровенной бочки радиационной защиты и быстренько засунули в нужное место анализатора.

Понятно, что за такие деньги калифорний просто обязан быть ядом, пусть и не таким крутым, как полоний, который лупит альфа-частицами, но нейтроны — тоже ничего. Но выходит дороговато, конечно.

Ну вроде всё — осталось поспать примерно четыре часа перед дорогой. Надеюсь, что вышло интересно, и я всё это корябал не зря.

Желаю тебе, %username%, быть твёрдым, как титан, лёгким на подъём, как литий, непреклонным, как иридий и ценным, как калифорний! Ну и побольше золота в кармане, само собой.
(можешь блеснуть этим тостом на следующем празднике — не благодари)

P.S. Поскольку с титаном к твёрдости придрались (почему-то больше ни к чему не придрались???) — достану туз из рукава.

11. Радий

Радий — это металл обмана и разочарования. И я поясню. Сам металл довольно редок и полностью радиогенен — возникает при распаде урана-238, урана-235 или тория-232; из четырёх найденных в природе наиболее распространённым и долгоживущим изотопом (период полураспада 1602 года) является радий-226, входящий в радиоактивный ряд урана-238. За время, прошедшее с момента его открытия супругами Кюри, — более столетия — во всём мире удалось добыть всего только 1,5 кг чистого радия. Одна тонна урановой смолки, из которой супруги Кюри получили радий, содержала лишь около 0,1 г радия-226.

Радий в буквальном смысле слова испаряется: все изотопы радия (за исключением радия-228) распадаются до газа радона — кстати, тоже радиоактивного. Тип распада — α, однако гамма-кванты тоже выделяются.

Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало XX века в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.

А ещё этот металл красиво светится в темноте.

Понятно, что при таком наборе свойств и цене только ленивый не стал добавлять радий в свою продукцию и рассказывать, как она чудодейственна. Появилась масса «докторов», докторами не являющихся (и что мне это напоминает) — тот же Вилльям Дж. А. Бейли. Во Франции 1930-х изготовители наиболее популярных кремов для лица, «ThoRadia», похвалялись обогащением своих мазей торием и радием. В Германии производили зубную пасту с радием. Видимо именно оттуда возникло выражение «Ваше лицо сияет» и «Ваши зубы ослепительны». Ну не знаю.

Имелись содержащие радий крекеры, а добавление бромида радия к шоколаду было запатентовано в Германии в 1936 г. Шоколадки и крекеры можно было запить радиоактивной минеральной водой. Эта вода продавалась по высоким ценам, а в рекламах гордо именовалась как «имеющая высокое содержание радиоактивных элементов». Наиболее известным брендом такой минералки был Radithor в 60-ти мл бутылках, содержащих по 2 микрокюри радия (именно его всем предлагал уже упомянутый «доктор» Бейли якобы как стимулятор эндокринной системы).

Примеры суперпродукции

Радий — щелочноземельный металл, а значит по химизму очень сходен с кальцием и магнием. И очень неплохо заменяет их в костях — а оттуда начинает прямой наводкой бомбардировать костный мозг, лёгкие и прочие нежные органы. Немного утешает то, что доступна радиевая продукция была только действительно богатым людям…

11 апреля 1932 года журнал Time сообщил, что известный богач, спортсмен и светский лев, любитель гольфа и водички Radithor (после того как повредил руку в 1927 году) Эбен Байер умер от отравления радием.

Статья Time

В 1965 его тело было эксгумировано. Обнаружено, что Байер суммарно принял порядка 500 микрокюри радия. Неудивительно, что причина смерти — множественные новообразования, абсцессы в мозгу и в прямом смысле слова дыры в черепе — проще говоря, рак.

Если ты думаешь, %username%, что это кого-то чему-то научило — то ошибаешься: вплоть до 1970-х радий вместе с люминофором — обычно, сульфидом цинка — наносили на стрелки различных приборов, в том числе часов. Это называлось «светомасса постоянного действия» — или СПД. В СССР СПД обычно была горчично-жёлтая, а в Америке — зеленовато-белая или голубоватая.

Некоторые примеры

Так вот, СПД со временем начинается иссыхаться и превращаться в пыль, ты эту пыль вдыхаешь — и куда попадает радий? Правильно! Пять! В смысле — пять лет жизни тебе осталось. Наверное. Ну в любом случае — немного.

Кстати, даже есть группа в ВК, где выкладывают фото с СПД.

Кстати, с именем радий исторически связаны и другие изотопы, никакого отношения к радию не имеющие. А именно:
Радий A 218Po
Радий B 214Pb
Радий C 214Bi
Радий C1214Po
Радий C2210Tl
Радий D 210Pb
Радий E 210Bi
Радий F 210Po

На самом деле эти изотопы были открыты как продукты в цепочке дальнейшего распада радия, но до их идентификации как элементов — их называли радием А, В и так далее. Ну а потом имена прижились.

Вот так вот бывает, когда ты к элементу со всей душой — а он тебе… Жизнь — боль.

Я оправдался за титан? 😉

Самые дорогие металлы в мире. Топ-13

На планете существует большое количество разнообразных металлов, различающихся редкостью и сложностью добычи. Специалисты данной области делят их на две группы: природные и искусственно получаемые в лабораторных условиях. Стоимость некоторых представителей второй группы сильно отличается от стоимости природных металлов, присутствующих на мировом рынке, по причине длительного и трудоемкого процесса их изготовления.
В данном рейтинге представлено 13 самых дорогих металлов в мире.


13-место: Индий – ценный серебристо-белый металл из группы легких металлов, обладающий сильным блеском. Был открыт в 1863 году в Германии в химической лаборатории ученых Фердинанда Рейха и Теодора Рихтера, которые изучали добытые в горах Саксонии цинковые минералы. Он мягкий, легкоплавкий и ковкий, его без труда можно порезать обычным ножом. Самостоятельных месторождений индий не образует и входит в состав руд цинка, свинца, меди и олова. Ежегодно производится несколько сотен тонн данного металла. Благодаря своим уникальным свойствам он нашел широкое применение в микроэлектронике, полупроводниковой технике, машиностроении. Его используют для изготовления зеркал, фотоэлементов, зубных цементов, в качестве уплотнителя и даже в космических технологиях. Цена 1 грамма металла индия равняется 0,5-0,7 долларам.

 

12-е место: Серебро – известный с давних времен и один из популярнейших драгоценных металлов, встречающийся как в самородном состоянии, так и в виде соединений. Используется для покрытия зеркал, изготовления ювелирных украшений и монет. Он активно применяется в электронике, стоматологии, фотографии, обладает отличной электро- и теплопроводностью. Крупнейшие запасы данного металла сосредоточены в Польше, Китае, Мексике, Чили, Австралии, США и Канаде. Стоимость грамма серебра составляет 0,55-1 у.е.


11-е место: Рутений – яркий серебристый металл, характеризующийся тугоплавкостью, твердостью и хрупкостью одновременно, самый редкий из платиновой группы. Был открыт в 1844 году профессором Карлом Клаусом, занимавшимся исследованиями в Казанском университете. Характеристики рутения делают его востребованным материалом в ювелирном деле, химической и электронной промышленности. Его используют для изготовления лабораторной посуды, контактов, электродов, проводов. В Японии и Западной Европе большое количество рутения идет на производство печатных схем и резисторов, а также для получения хлора и разнообразных щелочей. Данный металл часто используется как катализатор для множества химических реакций. Его производство полностью сосредоточено в ЮАР. Стоимость одного грамма рутения составляет 1,5-2 доллара.


10-е место: Скандий – легкий и высокопрочный металл серебристого цвета с желтым отливом. Впервые элемент был обнаружен в 1879 году шведским химиком Ларсом Нильсоном, который назвал его в честь Скандинавии. Скандий активно применяется в мире высоких и инновационных технологий. Его используют при конструировании роботов, ракет, самолетов, спутников и лазерной техники. Также сплавы данного металла служат в спортивной сфере – для изготовления высококлассного инвентаря, такого как клюшки для гольфа и высокопрочные рамы для велосипедов. Самые крупные месторождения богатых скандием минералов находятся в Норвегии и на Мадагаскаре. Стоимость одного грамма данного металла равняется 3-4 долларам США.


9-е место: Рений – серебристо-белый металл, относящийся к самым востребованным, труднодоступным и редким элементам в мире. Он очень плотный и имеет третью самую высокую температуру плавления среди всех своих сородичей. Обнаруженный в 1925 году металл используется в электронной и химической промышленности. Высокая плотность позволяет изготовлять из него лопатки турбин, сопла для реактивных двигателей и т.д. Цена на грамм рения колеблется от 2,4 до 5 условных единиц за грамм.


8-е место: Осмий – голубовато-серебристый металл, характеризующийся высокой плотностью и хрупкостью. В чистом виде в недрах его не существует, встречается только в связках с другим металлом из платиновой группы – иридием. Был открыт в 1803 году двумя британскими химиками Смитсоном Теннантом и Уильямом Волластоном. Свое название металл получил от греческого слова osme, что означает “запах”. Осмию действительно присущ довольно резкий и неприятный запах, напоминающий смесь чеснока и хлорки. Добывают данный металл на Урале, в Сибири, Южной Африке, Канаде, США и Колумбии. Используется в основном в химической промышленности в качестве катализатора и в фармакологии. Цена одного грамма осмия на мировом рынке составляет 12-15 долларов.


7-е место: Иридий – тяжелый, твердый и одновременно хрупкий металл серебристо-белого цвета. Мир впервые узнал о нем в 1803 году благодаря британскому химику С. Теннанту, который также открыл вышеупомянутый элемент. Самостоятельно иридий практически нигде не применяется и чаще всего используется для создания сплавов. Он обладает высокой температурой плавления, плотный и выступает в качестве наиболее коррозиестойкого металла. Ювелиры добавляют его к платине, поскольку он делает ее втрое тверже, а украшения из такого сплава практически не изнашиваются и очень красиво выглядят. Также он востребован при изготовлении хирургических инструментов, электроконтактов, точных лабораторных весов. Из него делают кончики для дорогих авторучек. Иридий применяется в аэрокосмической технике, биомедицине, стоматологии, химической промышленности. В течение года мировая металлургия расходует приблизительно одну тонну данного металла. Основное месторождение иридия находится в ЮАР. Его стоимость равняется 16-18 долларам за 1 грамм.


6-е место: Палладий – легкий, гибкий серебристо-белый металл из платиновой группы. Он очень пластичный, легкоплавкий, хорошо полируется, не тускнеет и довольно стоек к коррозии. Был открыт в 1803 году британским химиком Уильямом Волластоном, отделившим незнакомый металл от платиновой руды, которая прибыла из Южной Америки. Сегодня палладий приобретает все большую популярность среди ювелиров, поскольку невысокая цена, доступность и легковесность позволяют дизайнерам создавать из него самые смелые ювелирные творения, относящиеся к различным ценовым категориям и стилям. Платиновый металл широко используется в очистительных устройствах и для антикоррозийных покрытий. Наибольшее количество данного элемента на мировые рынки поступает из России, но крупные месторождения также есть в ЮАР. Стоимость палладия составляет 25-30 у.е. за один грамм.


5-е место: Родий – твердый благородный металл из платиновой группы серебристого цвета, обладающий сильными отражающими свойствами. Он очень твердый, устойчив к воздействию высоких температур и окислению. Был открыт в 1803 году в Англии химиком Уильямом Волластоном в процессе работы с самородной платиной. Родий считается редким элементом – ежегодно добывается около 30 тонн данного металла. Самые крупные месторождения находятся в России, ЮАР, Колумбии и Канаде. Примерно 80 % родия служит катализатором в автомобильной и химической промышленности. Из него изготовляют зеркала и фары для автомобилей, а в ювелирном деле он применяется в ходе конечной обработки изделий. Главное достоинство родия – участие в производстве ядерных реакторов. Стоимость ценного платинового металла колеблется в пределах 30-45 долларов за 1 грамм.


4-е место: Золото – главный драгоценный металл, который в природе встречается исключительно в чистом виде. Оно очень прочно, однородно, устойчиво к коррозии и считается самым ковким. Из-за своей долговечности и пластичности уже много лет золото носит звание самого популярного благородного металла. Широко используется в ювелирной, электронной промышленности, стоматологии. Крупнейшие страны-золотодобытчики – США, Китай, ЮАР, Австралия. Стоимость одного грамма золота на мировом рынке составляет 35-45 у.е.


3-е место: Платина – благородный металл серебристо-белого цвета с особенным блеском, встречающийся в природе только как естественный сплав с другими металлами: благородными и неблагородными. Она приобрела большую популярность благодаря присущей ей пластичности, плотности и отличному виду. Получение данного металла осуществляется в результате сложных химических процессов. Кроме производства ювелирных изделий и монет, платина широко используется в медицинской и электронной промышленности, в аэронавтике, производстве оружия. Крупнейшие страны-добытчики платины — ЮАР, Россия, США, Зимбабве, Канада. Цена одного грамма данного металла колеблется в пределах 40-50 долларов.


2-е место: Осмий-187 – редкий изотоп, процесс добычи которого отличается особой сложностью и занимает около девяти месяцев. Он представляет собой черный мелкокристаллический порошок с фиолетовым оттенком, носящий звание самого плотного вещества на планете. При этом изотоп Осмий-187 очень хрупок, его можно растолочь в обычной ступе на мелкие частички. Он имеет важное научно-исследовательское значение, его используют как катализатор химических реакций, для изготовления измерительных приборов высокой точности и в медицинской отрасли. Казахстан — первое и единственное государство, продающее Осмий-187 на мировом рынке. Рыночная стоимость уникального металла составляет 10 тысяч у.е. за 1 грамм, а в книге рекордов Гиннесса он оценивается в 200 тысяч американских долларов.


1-е место: Калифорний-252 – один из изотопов калифорния, самый дорогой металл в мире, стоимость которого достигает 10 миллионов долларов США за 1 грамм. Его баснословная цена вполне оправдана – ежегодно производится всего 20-40 микрограммов данного элемента, а общий мировой запас составляет не более 8 граммов. Создают калифорний-252 в лабораторных условиях с помощью двух ядерных реакторов, которые находятся в США и России. Впервые данный металл был получен в Калифорнийском Университете в Беркли в 1950 году. Уникальность калифорния кроется не только в его стоимости, но и в его особых свойствах – энергия, вырабатываемая одним граммом изотопа, равняется энергии среднего атомного реактора. Применение самого дорогого металла в мире распространяется на область медицины и научные исследования ядерной физики. Калифорний-252 – мощный источник нейтронов, что позволяет использовать его для обработки злокачественных опухолей, где другая лучевая терапия бездейственна. Уникальный металл позволяет просвечивать части реакторов, детали самолетов, и обнаруживать повреждения, которые обычно тщательно скрываются от рентгеновских лучей. С его помощью удается находить запасы золота, серебра и месторождения нефти в недрах земли.

На фото — калифорний рядом с гвоздем

Можно ли делать МРТ с имплантами зубов? Разрушаем мифы о процедуре МРТ.

МРТ или магнитно-резонансная томография — современный метод высокоточного исследования организма человека, основанный на действии магнитных волн. И в этом причина определенных ограничений для проведения процедуры, в том числе, пациентам с имплантами зубов. В каких случаях обследование безопасно и есть ли жесткие ограничения для людей с имплантами зубов?

Принцип работы МРТ

Конечный результат МРТ обследования — это изображения организма человека “изнутри”, создаваемое с помощью магнитных волн. В аппарате образуется магнитное поле, в которое помещается пациент, и компьютер фиксирует исходящий от молекул его тела обратный сигнал.

Полученное изображение — не просто фотография. Магнитные импульсы создают трехмерную послойную картинку, то есть, рассмотреть организм можно на разной глубине и с разных сторон. Метод позволяет получить точную информацию:

  • о месте локализации новообразований, даже малой формы;
  • о микроинсультах и кровоизлияниях;
  • незаметной для других типов сканирования деформации сосудов, аневризме и рассеянном склерозе;
  • не определяемых на других устройствах межпозвоночных грыжах.

Влияние процедуры МРТ на импланты

Поскольку обследование базируется на использовании магнитных волн, у многих пациентов возникает логичный вопрос: можно ли делать МРТ с имплантами зубов? Эти опасения понятны, но не всегда обоснованы.

В стоматологии, как и в любом другом направлении медицины, технология протезирования постоянно развивается, появляются новые материалы и методики. Так, если раньше зубные коронки изготавливались из сплава меди и золота, то сегодня вам предложат металлокерамику или титановый сплав.

В чем разница? Старая технология медь-золото давала искажения на снимках МРТ, но при этом не влияла на здоровье или состояние пациента во время процедуры. Сегодня в стоматологии массово используется титан с небольшими примесями других элементов, что делает протез более легким и прочным. По своей природе титан химически инертен, поэтому не окисляется, не выделяет вредных веществ и не реагирует на магнитные волны, а значит не дает искажения на снимках. Все это касается не только зубов, но и протезов костей, суставов.

Металлокерамика при МРТ также не влияет ни на самочувствие, ни на результат диагностики.

Но, кроме самого импланта есть еще штифты, пластины и винты, на которые он крепится. В них и может заключаться проблема. Детали креплений имплантов изготавливаются из различных ферромагнетиков, особых сплавов железа, которые имеют положительную магнитную восприимчивость. Воздействие на них магнитного поля может давать искаженные результаты и влиять на самочувствие пациента во время процедуры.

Как воздействуют железные детали имплантатов на различные области при МРТ

Вне зависимости от области обследования перед процедурой необходимо обязательно снять все металлические предметы:

  • кнопки,
  • заклепки,
  • крючки,
  • молнии,
  • пряжки,
  • ключи,
  • монеты,
  • брелоки,
  • украшения,
  • часы,
  • мобильные телефоны,
  • магнитные носители (кассеты, дискеты),
  • кредитные карточки.

Кроме того, необходимо предупредить медицинский персонал о наличии в теле имплантов или протезов, особенно с содержанием металлов. При МРТ головы и шейного отдела позвоночника сплавы железа в крепеже зубных протезов могут нагреваться и двигаться. Это может привести не только к искажению результатов диагностики, но и к дискомфорту или возможной травме обследуемого. Однако, подобный исход возможен только при наличии в теле больших фрагментов металла, а масса штифта или пластины ничтожно мала. Поэтому даже при наличии большого количества имплантов возникновение подобной ситуации практически невозможно. И уж точно, присутствие в теле импланта не повод отказываться от МРТ.

На остальные виды МРТ – костей, суставов, грудного и поясничного отделов позвоночника – наличие металлических креплений в зубных имплантатах никакого влияния не оказывает. Непосредственно МРТ диагностику зубов назначают редко, к челюсти сложно «подобраться» с помощью этого томографа.

А МРТ конечностей, поясницы и позвоночника проходят без последствий. Диагностику зубов этим методом назначают редко — к челюсти сложно «подобраться» с помощью МРТ.

Мифы о процедуре МРТ

Чему не стоит верить, отправляясь на МРТ:

1. Во время процедуры нагреваются и двигаются импланты.

Удельный вес металлической детали крепления имплантата ничтожно мал, а значит и дефектов на снимках и дискомфорта для пациента от нее не будет. Но все же стоит предупредить медицинский персонал, если она состоит из диоксида циркония, чистой керамики или дорогих сплавов, противопоказаний к МРТ нет, а вот если металлокерамика, необходимо уточнить, из каких металлов и примесей состоит имплантат. Если в составе много металлов ферромагнитов, скорее всего, качество изображения будет снижено и оценить структуры, находящиеся за конструкцией, будет невозможно.

2. Нельзя делать МРТ при беременности.

Это неправда только отчасти. В первом триместре беременности происходит закладка тканей и жизненно-важных органов ребенка, поэтому любое физическое, химическое и биологическое воздействие должно быть исключено. Поэтому МРТ в этот период проводят лишь по экстренным показаниям. Однако на поздних сроках диагностика позволяет определить положение ребенка, выявить узкий таз у беременной и даст возможность акушеру подготовиться к правильному принятию родов.

3. Проходить МРТ с протезами больно.

Нет, это абсолютно безболезненная и безопасная процедура. Можно проходить МРТ даже с титановыми пластинами, они не подвержены воздействию магнитного поля и не могут нанести вред. В процедуре могут отказать только при имплантированной стальной пластине в теле пациента, поскольку она нагревается и смещается под воздействием магнитного поля, что может травмировать пациента.

Что может стать настоящей причиной для отказа от МРТ?

  1. Клаустрофобия. Пациента помещают в закрытый аппарат на непродолжительное время, что может спровоцировать паническую атаку. Но здесь все зависит от степени клаустрофобии и вида обследования. Кроме того, каждый аппарат имеет “тревожную” кнопку, при нажатии которой процедура немедленно останавливается и к пациенту подходит медицинский персонал.
  2. Установленный кардиостимулятор может прийти в опасный резонанс с магнитными волнами и прекратить работу.
  3. Слуховой аппарат перед началом обследования необходимо обязательно снять, так как под воздействием магнитного поля может быть поврежден магнит в составе аппарата. А наличие имплантов среднего и внутреннего уха является абсолютным противопоказанием, так как в их составе часто используются сплавы металлов с сильными магнитными свойствами.
  4. Инсулиновая помпа является абсолютным противопоказанием для проведения МРТ.

Перед процедурой необходимо обязательно сказать врачу обо всем, что может отразиться на вашем здоровье и результате диагностики. Нельзя замалчивать что-то в страхе, что МРТ не сделают. Как правило, любая проблема решаема, а в случае с металлическими протезами и имплантами в теле пациента врач просто настроит томограф, так, что с учетом расположения и состава протеза прибор выдаст максимально качественный четкий снимок. При абсолютных противопоказаниях к проведению МРТ врач подберет наиболее информативный и разрешенный в вашем случае вид исследования.

Если же пациент “забудет” о ненастоящей идеальной улыбке, снимки получатся смазанными, и придется проходить МРТ заново, уже честно признавшись во всех вмешательствах в организм.

Если вы планируете пройти МРТ диагностику у квалифицированных специалистов, на современном оборудовании экспертного класса в комфортных условиях и в кратчайшие сроки — позвоните по номеру телефона, указанному на сайте, или оставьте заявку в форме обратной связи. Специалисты медицинского центра «Адмиралтейские верфи» ответят на ваши вопросы и проведут все необходимые обследования в течение одного рабочего дня. Давайте заботиться о вашем здоровье вместе!


11 примеров сплавов в повседневной жизни — StudiousGuy

Сплавы можно определить как комбинацию металлов или комбинацию металлов с одним или несколькими неметаллическими элементами, которые образуются для улучшения свойств основных металлов с точки зрения прочности, долговечности и способности выполнять различные действия.

Результат процесса объединения чистого металла с одним или несколькими другими металлами или неметаллами для улучшения свойств чистого металла называется сплавом.

Ниже приведены некоторые примеры сплавов, которые используются в нашей повседневной жизни. Прокрутите дальше, чтобы узнать о них больше.

1. Бронза

Бронза — это первый обнаруженный сплав, состоящий из 85–88% меди, 12–12,5% олова и с небольшими добавками некоторых других металлов, таких как алюминий, марганец, цинк или никель. Эта смесь предназначена для улучшения свойств меди.

Использование: Бронза используется при изготовлении скульптур, музыкальных инструментов, медалей и в промышленности.

2. Сталь

Сталь — это сплав железа с содержанием углерода около 1% и может содержать некоторые другие элементы, такие как марганец и т. Д. Сталь изготавливается, поскольку она обладает свойством быть прочной, твердой и устойчивой к коррозии.

Использование: Являясь дешевым сплавом, он широко используется в строительстве дорог, железных дорог, аэропортов, мостов, небоскребов и т. Д. Кроме того, сталь используется в производстве крупной бытовой техники, а также в производстве различных строительные материалы, товары для дома и др.

Виды стали

  • Углеродистая сталь: Углеродистая сталь — это сталь с содержанием углерода до 2,1% по весу.
  • Нержавеющая сталь: Нержавеющая сталь также известна как нержавеющая сталь, которая содержит минимум 11% хрома по массе и максимум 1,2% углерода по массе.
  • Инструментальная сталь: Инструментальная сталь — это высококачественные углеродистые и легированные стали с содержанием углерода 0.5% и 1,5%. Используется при изготовлении инструментов, которые необходимы для придания формы другим материалам.
  • Легированная сталь: Легированная сталь производится путем объединения углеродистой стали с одним или несколькими легирующими элементами, такими как марганец, кремний, никель, титан, медь, хром и алюминий.

3. Латунь

Латунь похожа на Бронзу; Единственная разница в том, что бронза — это сплав меди и олова, а латунь — это сплав меди и цинка с некоторыми другими элементами, такими как мышьяк, свинец, фосфор, алюминий, марганец и кремний.Этот сплав сделан для улучшения электрических и механических свойств.

Использование: Латунь используется в производстве предметов декора, замков, застежек-молний, ​​шестеренок, дверных ручек, музыкальных инструментов и т. Д. Она также используется в сантехнике и в электротехнике.

Типы латуни

  • Alpha Brass: Alpha латунь состоит более чем на 65% из меди и менее чем на 35% из цинка. Он имеет только одну фазу и является ковким, пластичным, его можно обрабатывать в холодном состоянии, а также для сварки, прессования, ковки и других подобных применений.
  • Alpha-Beta Brass: Alpha-Beta содержит 55-65% меди и 35-45% цинка. Он также известен как дуплексная латунь и подходит для горячей обработки. Он имеет как альфа-, так и бета-фазы, поэтому он прочнее, чем альфа-латунь.
  • Бета-латунь: Бета-латунь содержит 50-55% меди и 45-50% цинка. Он сделан из бета-структуры и поэтому прочнее, чем латунь из альфа и альфа-бета. Работать можно только в горячем состоянии.
  • Gamma Brass: Gama Brass содержит 33–39% меди и 61–67% цинка.
  • Белая латунь: Белая латунь состоит из менее 50% меди и более 50% цинка. Он хрупкий и имеет серебристый цвет вместо желтого.

4. Алнико

Алнико — это сплав железа с алюминием, никелем и кобальтом. Название является аббревиатурой от Al-Ni-Co (алюминий, никель и кобальт).Алнико ферромагнитен и называется самым сильным типом магнита после неодима и самарий-кобальта.

Использование: Сплав Alnico используется для изготовления постоянных магнитов.

5. Припой

Припой — это легкоплавкий металлический сплав, используемый для постоянного соединения металлических деталей. Это сплав олова и свинца со следами некоторых других металлов.

Использование: Этот сплав используется для создания постоянного соединения между электрическими компонентами.

6. Чугун

Чугун — это сплав железа, который содержит 96-98% железа, 2-4% углерода и некоторые следы кремния. Чугун обладает низкой температурой плавления, литейными качествами, обрабатываемостью, хорошей текучестью, устойчивостью к деформации и износостойкостью.

Использование: Используется в металлических конструкциях, таких как мосты и сверхпрочная посуда.

7. Серебро 925 пробы

Серебро

пробы — это сплав серебра с пробы 92.5% серебра и 7,5% других металлов, обычно меди. Серебро очень легко потускнеет. Итак, чтобы уменьшить потускнение, медь вместе с некоторыми другими металлами смешивается с серебром, образуя сплав, называемый стерлинговым серебром. Это также улучшает прочность и твердость серебра.

Использование: Стерлинговое серебро используется для изготовления столовых приборов, ювелирных изделий, музыкальных инструментов и различных медицинских инструментов.

8. Белое золото

Белое золото — это сплав золота по крайней мере с одним белым металлом, обычно серебром, никелем или палладием.

Использование: Сплав золото-никель твердый и прочный. Из него делают кольца и булавки. Золото-палладий мягкое и используется для оправы из белого золота с драгоценными камнями, что увеличивает прочность и долговечность.

9. Розовое золото

Розовое золото — это сплав золота с медью. Этот сплав был впервые использован в России в девятнадцатом веке, его еще называют русским золотом. Другие названия розового золота — розовое золото и красное золото.

Использование: Используется для изготовления обручальных колец, браслетов и других украшений.

10. Wood’s Metal

Металл Вуда — это сплав, который состоит из 50% висмута, 26,7% свинца, 13,3% олова и 10% кадмия по весу. Барнабас Вуд изобрел металлический сплав дерева.

Использование: Обычно металл Вуда используется в качестве элемента клапана в спринклерных системах пожаротушения, установленных в зданиях.Также используется в механических цехах, технических лабораториях, при ремонте антиквариата и т. Д.

11. Нихром

Нихром — это различные сплавы никеля, хрома и железа. Этот сплав широко используется в качестве проволоки сопротивления. Он имеет высокую температуру плавления, низкую стоимость изготовления, прочность, пластичность, сопротивление потоку электронов и сопротивление окислению. Благодаря всем таким свойствам нихром широко используется в нагревательных элементах.

Использование: Используется в производстве взрывчатых веществ и фейерверков, а также в производстве нагревательных элементов.

20 обычных металлических сплавов и из чего они сделаны

Все добытые нами металлы в одной визуализации

Изначально это было размещено на Elements. Подпишитесь на бесплатную рассылку, чтобы еженедельно получать красивые визуализации мегатенденций природных ресурсов по электронной почте.

Металлы повсюду вокруг нас, от наших телефонов и автомобилей до наших домов и офисных зданий.

Хотя мы часто упускаем из виду присутствие этого сырья, оно является неотъемлемой частью современной экономики.Но получение этих материалов может быть сложным процессом, который включает в себя добычу, очистку, а затем преобразование их в пригодные для использования формы.

Итак, сколько металла добывается за год?

Металлы и руды

Прежде чем углубляться в цифры, важно различать руды и металлы.

Руды — это природные породы, содержащие металлы и их соединения. Металлы — это ценные части руд, которые можно извлечь путем отделения и удаления пустой породы.В результате добыча руды обычно намного превышает фактическое содержание металлов в руде. Например, в 2019 году горняки добыли 347 миллионов тонн бокситовой руды, но фактическое содержание извлеченного из нее металлического алюминия составило всего 62,9 миллиона тонн.

Вот все металлы и металлические руды, добытые в 2019 году, по данным Британской геологической службы:

Металл / руда Добытое количество (тонны)% от общего количества
Железная руда 3,040,000,000 93.57%
Промышленные металлы 207 478 486 6,39%
Технологии и драгоценные металлы 1335848 0,04%
Итого 3 248 814 334 100%

Горняки добыли примерно три миллиарда тонн железной руды в 2019 году, что составляет около 94% всех добытых металлов. Основное использование всего этого железа — производство стали.Фактически, 98% железной руды идет на производство стали, а остальная часть используется для различных других целей.

Промышленные и технологические металлы составили остальные 6% всех добытых металлов в 2019 году. Как они распадаются?

Промышленные металлы

От строительства и сельского хозяйства до производства и транспорта — практически каждая отрасль по-разному использует свойства металлов.

Вот промышленные металлы, добытые нами в 2019 году.

Металл Объем добычи (тонны)% от общего количества
Алюминий 62,900,000 30%
Марганцевая руда 56,600,000 27%
Хромовые руды и концентраты 38600000 19%
Медь 20,700,000 10%
цинк 12 300 000 6%
Титан (содержание диоксида титана) 6,300,000 3%
Свинец 4,700,000 2%
Никель 2,702,000 1%
Минералы циркония (Циркон) 1,337,000 1%
Магний 1,059,736 1%
Стронций 220 000 0.11%
Уран 53400 0,03%
Висмут 3,700 0,002%
Меркурий 2400 0,001%
Бериллий 250 0,0001%
Итого 207 478 486 100%

Сумма процентов не может равняться 100 из-за округления.

Неудивительно, что алюминий является самым производимым промышленным металлом.Легкий металл — один из наиболее часто используемых материалов в мире, от изготовления фольги и пивных бочонков до деталей зданий и самолетов.

Марганец и хром занимают второе и третье места соответственно по объему добываемого металла и являются важными ингредиентами в сталеплавильном производстве. Марганец помогает превращать железную руду в сталь, а хром твердеет и делает сталь более жесткой. Кроме того, марганец является важным ингредиентом литий-марганцево-кобальтовых батарей (NMC) для электромобилей.

Хотя производство меди составляет около 1/3 алюминия, медь играет ключевую роль в создании современной жизни. Красный металл присутствует практически в каждом проводе, двигателе и электроприборе в наших домах и офисах. Это также важно для различных технологий использования возобновляемых источников энергии и электромобилей.

Технологии и драгоценные металлы

Качество технологий зависит от материалов, из которых они изготовлены.

Технологические металлы можно отнести к относительно редким металлам, обычно используемым в технике и устройствах.В то время как майнеры производят одни технологические и драгоценные металлы в больших количествах, других относительно мало.

Металл Объем добычи в 2019 году (тонны)% от общего количества
Олово 305000 23%
Молибден 275000 21%
Редкоземельные элементы 220 000 16%
Кобальт 123000 9%
Литий 97,500 7%
Вольфрам 91,500 7%
Ванадий 81,000 6%
Ниобий 57000 4%
Кадмий 27,500 2%
Тантал 27000 2%
Серебро 26,261 2%
Золото 3,350 0.3%
Индий 851 0,06%
Металлы платиновой группы 457 0,03%
Галлий 380 0,03%
Рений 49 0,004%
Итого 1335848 100,00%

Сумма процентов не может равняться 100 из-за округления.

Олово было самым добываемым техническим металлом в 2019 году, и, по данным Международной ассоциации олова, почти половина его ушла на пайку.

Интересно также увидеть преобладание металлов для батарей и энергии. Литий, кобальт, ванадий и молибден имеют решающее значение для различных энергетических технологий, включая литий-ионные батареи, ветряные электростанции и технологии хранения энергии. Кроме того, горняки также добыли 220 000 тонн редкоземельных элементов, из которых , 60%, поступили из Китая.

Учитывая их редкость, неудивительно, что золото, серебро и металлы платиновой группы (МПГ) были наименее добываемыми материалами в этой категории.В совокупности эти металлы составляют всего 2,3% технологических и драгоценных металлов, добытых в 2019 году.

Материальный мир

Хотя люди ежегодно добывают и используют огромное количество металлов, важно рассматривать эти цифры в перспективе.

По данным Circle Economy, в мире ежегодно потребляется 100,6 миллиардов тонн материалов. Из этой суммы на 3,2 миллиарда тонн металлов, произведенных в 2019 году, придется всего 3% нашего общего потребления материалов.Фактически, ежегодное производство только цемента в мире составляет около 4,1 миллиарда тонн, что намного меньше общего производства металла.

Аппетит мира к материалам растет вместе с его населением. По мере ускорения ресурсоемких мегатенденций, таких как урбанизация и электрификация, наш материальный пирог будет только увеличиваться.

Типы металлов и их использование [с иллюстрациями]

Металлы

Общие сведения о металлах?

Типы металлов и их использование [с изображениями]: — Значение металлов и прогресс в производственных процессах привели к столь необходимой промышленной революции.Эта революция способствовала ускоренному росту человеческой цивилизации, приведя нас туда, где мы находимся сегодня. Сегодня мы находим множество типов металлов в нашем окружении. От кончика пера до больших стальных перемычек — все, большое или маленькое, состоит из металлов. К нашему удивлению, сегодня в мире обнаружено более восьмидесяти различных типов металлов.

Определение металлов

Металлы определяются как минералы или вещества, которые естественным образом встречаются под поверхностью земли.Большинство металлов блестящие или блестящие. Металлы — это неорганические вещества, что означает, что они являются продуктом веществ, о существовании которых никогда не было известно. Металл невероятно прочен, поэтому из него делают несколько вещей. Они используются для производства транспортных средств, компьютерных товаров. Спутники, кухонная утварь и т. Д. Было обнаружено, что большинство металлов утомительно, а некоторые — нет. Натрий и калий — это те металлы, которые можно разрезать ножом, тогда как ртуть может быть жидким металлом при температуре.С другой стороны, металлы, такие как железо, медь, сталь и т. Д., Находятся в твердом состоянии.

A) Классификация по содержанию железа

Самый распространенный метод классификации металлов — по содержанию железа в них. Металл, содержащий железо, называется черным металлом. Железо отвечает за магнитные свойства металла, а также делает его подверженным коррозии. Металлы, не содержащие железа, называются цветными металлами. Эти металлы не обладают магнитными свойствами.Примеры алюминия, свинца, латуни, меди и цинка.

B) Классификация по атомной структуре

Металлы также можно классифицировать в зависимости от их атомной структуры в соответствии с периодической таблицей. Согласно периодической таблице, металл может быть отнесен к категории щелочных, щелочноземельных или переходных металлов. Металлы, входящие в одну группу, ведут себя одинаково, реагируя с другими элементами. Следовательно, эти металлы обладают аналогичными химическими свойствами.

C) Классификация по магнитным и немагнитным металлам

Еще одним способом различения металлов является изучение их поведения или взаимодействия с магнитами.Анализ их поведения по отношению к магнитам помогает классифицировать их как магнитные или немагнитные.

Ферромагнитные металлы сильно притягиваются к магнитам; парамагнитные металлы проявляют слабое взаимодействие. С другой стороны, диамагнитные металлы демонстрируют слабое отталкивание по отношению к магнитам.

Металлы бывают двух основных типов: черные металлы — это те, которые содержат железо, и цветные металлы, которые не содержат железа.

A) Черные металлы

Само слово «черный» происходит от латинского слова ferrum, означающего железо, содержащее соединение металла.Металлы, содержащие в своем составе значительно ограниченное количество железа, не относятся к черным металлам. Железо в черных металлах имеет тенденцию придавать им некоторые свойства, а именно магнитные свойства, высокую прочность и твердость. Однако их характеристики будут сильно отличаться, если посмотреть на широкий спектр легирующих частей, из которых они созданы. Металлы с металлическими элементами склонны к ржавчине при воздействии влажных условий, поскольку им необходимо высокое содержание углерода.

Некоторые распространенные металлические элементы включают сталь, кованое железо и железо.Эти металлы ценятся за их долговечность и прочность. Сталь — также называемая конструкционной сталью — может стать основным продуктом в отрасли и используется в строительстве самых высоких небоскребов и самых длинных мостов. Черные металлы также используются в морских контейнерах, промышленных трубопроводах, транспортных средствах, железнодорожных путях и во многих промышленных и бытовых инструментах. Металлические элементы металлов имеют высокое содержание углерода, что обычно делает их склонными к ржавчине при воздействии влаги. Есть 2 исключения из действующего правила: железо устойчиво к ржавчине благодаря своей чистоте, а нержавеющая сталь защищена от ржавчины наличием металлического элемента.

Большинство металлов, которые являются черными по своей природе, обладают огромным магнитным потенциалом, что делает их очень полезным материалом для изготовления двигателей, электрических устройств и т.д. магнит.

1. Сталь: (Типы металлов)

Сталь создается путем добавления железа к углероду, который укрепляет железо. Сталь становится еще более прочной, поскольку в нее вводятся различные детали, такие как металлический элемент и никель.Сталь получают путем нагрева и плавления руды в печах. Сталь будет вытягиваться из печей и разливаться в формы для создания стальных стержней. Сталь широко используется в разработке и производстве.

A) Нержавеющая сталь

Нержавеющая сталь имеет повышенное содержание хрома. Это делает ее в 200 раз более устойчивой к коррозии, чем низкоуглеродистая сталь. Он в изобилии используется для производства кухонной утвари, трубопроводов, хирургического и стоматологического оборудования.

B) Инструментальная сталь

Инструментальная сталь — это особая разновидность стали, используемая для ковки режущих и сверлильных инструментов. Самым важным свойством является их высокая твердость, что делает их идеальным выбором для изготовления инструментов. Инструментальная сталь состоит из молибдена, ванадия, кобальта и вольфрама в качестве основных материалов.

2. Углеродистая сталь: (Типы металлов)

Углеродистая сталь имеет более высокое содержание углерода по сравнению с другими видами стали, что в конечном итоге делает ее чрезвычайно твердой.Обычно используется при производстве станков, сверл, лезвий, метчиков. Он способен иметь очень острую кромку.

A) Низкоуглеродистая сталь

Доля углерода в низкоуглеродистой стали составляет до 0,25%. Низкоуглеродистая сталь также называется мягкой сталью. Этот стальной вариант в основном используется для труб с умеренным давлением. Арматурные стержни и двутавровые балки в строительстве обычно изготавливаются только из мягкой стали. В случаях, когда требуется большое количество стали без особого формования или гибки, используется низкоуглеродистая сталь.Например — корпус корабля.

B) Среднеуглеродистая сталь

Процент углерода составляет 0,25… 0,6%. Среднеуглеродистая сталь используется там, где требуется высокая прочность на разрыв и пластичность. Обычно он используется в зубчатых передачах и валах, железнодорожных колесах и рельсах, стальных балках в зданиях и мостах, сосудах под давлением (холодные газы нельзя хранить, потому что они трескаются при низких температурах).

C) Высокоуглеродистая сталь

Если 0.6% углерода, ее называют высокоуглеродистой сталью. Эта сталь тверже и хрупче всех. Используется при изготовлении долот и режущих инструментов. Он обладает большой твердостью и хорошей устойчивостью к износу материала. Его другие применения включают использование в прессах и для производства сверл.

3. Легированная сталь: (Типы металлов)

Легированные стали включают в себя такие детали, как металлический элемент — никель и Ti, для придания большей прочности и прочности без увеличения веса. Нержавеющая сталь — очень важная сталь, созданная с помощью хрома.Легированные стали используются в строительстве, станках и электротехнических элементах.

4. Чугун: (Типы металлов)

Чугун представляет собой сопутствующий сплав, состоящий из железа, углерода и т. Д. Кованое железо является хрупким, истощающим и невосприимчивым к износу. Он используется в водопроводных трубах, станках, автомобильных двигателях и печах.

5. Кованое железо: (Типы металлов)

Кованое железо — это сопутствующий сплав с очень низким содержанием углерода, поэтому можно сказать, что это практически чистое железо.На протяжении всего процесса производства происходит некоторое добавление шлака, который обеспечивает железу прекрасную стойкость к коррозии и реакциям, но при этом имеет низкую твердость и усталостную прочность. Железо используется для изготовления ограждений и перил, сельскохозяйственных орудий, гвоздей, проволоки, цепей и многочисленных украшений.

B) Цветные металлы

Цветные металлы не содержат большого количества железа и намного интереснее, поскольку им нужны полупроводящие, немагнитные свойства и малый вес.Постоянно растущий спрос на цветные металлы означает, что они обычно дороже, чем металлические элементы (черные металлы). Цветные металлы также можно отличить по своей пластичности. Это означает, что они будут переделаны и использованы повторно, как правило, без потери своих ценных свойств. Это делает их идеальными для самых разных отраслей экономики.

Одними из наиболее распространенных примеров цветных металлов являются цинк, олово, свинец и медь и даже очень ценные металлы, такие как золото и серебро.Их главное преимущество перед материалами металлических элементов — пластичность. Они даже не содержат железа, что придает им лучшую устойчивость к ржавчине и коррозии и, в конечном итоге, делает их идеальными для водосточных желобов, жидкостных труб, кровли и наружных вывесок. Наконец, они немагнитные, что очень важно для некоторых электронных и электромонтажных приложений.

1. Алюминий: (типы металлов)

Алюминий легкий, мягкий и малопрочный. Металл прочный, кованый, механически обработанный и сварной.Это не подходит для высокотемпературных сред. Поскольку металл имеет небольшой вес, он является достойной альтернативой для изготовления поделок и консервных банок. Металл дополнительно используется в отливках, поршнях, железных дорогах, автомобилях и бытовой посуде.

2. Медь: (Типы металлов)

Медь красного цвета, чрезвычайно пластичная, податливая и обладает высокими физическими характеристиками в отношении электропроводности и теплопроводности. Медь в основном используется в электротехническом бизнесе в виде проволоки и различных проводников.Он находит свое применение даже в гильзах, листовой кровле, подшипниках и статусах. Медь дополнительно используется для создания латуни, ассоциированного сплава цинка и меди.

3. Свинец: (Типы металлов)

Свинец может быть мягким, тяжелым, ковким металлом со сравнительно более низкой температурой плавления и низкой прочностью. Он будет подвержен коррозии из-за влаги и большого количества кислот. Свинец широко используется в силовых кабелях, батареях, строительстве и креплении.

4.Цинк: (Типы металлов)

Цинк может быть металлом средней и низкой прочности с ужасно низкой температурой плавления. Обработка будет несложной, однако иногда также проводится нагрев, чтобы избежать раскола кристаллов. Цинк чаще всего используется в электрических целях, таких как гальваника, метод нанесения защитного цинкового покрытия на железо или сталь для предотвращения ржавчины.

5. Олово: (Типы металлов)

Олово невероятно мягкое и податливое, пластичное с низкой прочностью.Обычно его используют для покрытия стали, чтобы предотвратить коррозию. Белая жесть из стали используется для изготовления жестяных банок для еды. В конце девятнадцатого века оловянная фольга обычно использовалась для упаковки пищевых продуктов, однако с тех пор ее заменила алюминиевая фольга. Олово также может быть легировано медью для получения оловянной латуни и бронзы.

6. Латунь: (Типы металлов)

Латунь — это в основном сплав меди и цинка. Количество каждого из металлов может отличаться в зависимости от требуемых электрических и механических характеристик металла.Латунь также содержит небольшое количество других металлических элементов, таких как алюминий, свинец и марганец. Латунь обычно используется для элементов с низким коэффициентом трения, таких как замки, подшипники, сантехника, инструменты и арматура. Это критически важный металл в безопасных по своей природе применениях, предотвращающий искрение и позволяющий использовать его в легковоспламеняющихся средах.

7. Бронза: (Типы металлов)

Бронза — еще один популярный сплав меди. Единственная разница в том, что бронза содержит олово, а не цинк. Когда к бронзе добавляются другие элементы, такие как фосфор, марганец, кремний и алюминий, это может улучшить ее свойства и пригодность для конкретного применения.Бронза обладает следующими характеристиками — она ​​хрупкая, твердая и хорошо сопротивляется усталости. Он также демонстрирует адекватную электрическую и теплопроводность и коррозионную стойкость. Бронза в основном используется для изготовления зеркал, отражателей, электрических разъемов и т. Д. Благодаря своей исключительной коррозионной стойкости, она используется в подводных частях и судовой арматуре.

8. Титан: (Типы металлов)

Титан является основным конструкционным металлом, поскольку он прочен и в то же время значительно легок.Он также обладает необходимой термической стабильностью даже при повышенных температурах до 480 градусов Цельсия. Благодаря таким важным характеристикам он находит применение в аэрокосмической промышленности, производстве военной техники — один из вариантов использования, в медицине (из-за низкой коррозионной стойкости). Титан также находит широкое применение в химической и спортивной промышленности.

9. Кобальт: (Типы металлов)

Кобальт с древних времен находит свое применение в производстве синих пигментов в красках и красителях.В наше время этот металл в основном используется для изготовления износостойких высокопрочных стальных сплавов. Кобальт обычно является побочным продуктом добычи меди и никеля, и его собственная добыча осуществляется редко.

10. Никель: (типы металлов)

Никель — один из наиболее распространенных металлов, используемых в самых разных местах. Никель в основном используется для изготовления нержавеющих сталей, чтобы повысить прочность и коррозионную стойкость металла. Почти 70% никеля, производимого в мире, находят применение в производстве нержавеющей стали.

11. Вольфрам: (Типы металлов)

Металлический вольфрам известен своей самой высокой температурой плавления и самой высокой прочностью на растяжение среди всех чистых металлов. Эти два свойства делают вольфрам чрезвычайно полезным металлом.

Около 50% всего производимого вольфрама используется для производства карбида вольфрама. Это очень твердый материал, используемый для изготовления режущего инструмента (для горнодобывающей и металлообрабатывающей промышленности), абразивов и тяжелого оборудования.

18 различных типов металла (факты и применение) — изготовление из металла

Многое произошло со времен бронзового века.Существуют тысячи различных типов и марок металла, и каждый из них разработан для очень специфических применений.

Каждый день вы будете регулярно контактировать с десятками видов металлов. Вот интересное руководство, которое проведет вас через некоторые из этих распространенных металлов и где вы их найдете.

Сталь

Это самый распространенный металл в современном мире.

Сталь по определению — это просто железо (элемент), смешанное с углеродом.Это соотношение обычно составляет около 99% железа и 1% углерода, хотя это соотношение может немного варьироваться.

Интересный факт: В 2017 году в мире было произведено более 1,8 миллиарда тонн стали (половина из которых была произведена в Китае). Средний африканский слон весит около 5 тонн. Если бы вы сложили слонов друг на друга, чтобы образовать действительно своеобразный мост на Луну (что на самом деле невозможно), он все равно был бы не таким тяжелым, как вес стали, производимой каждый год.

На самом деле существует много разных видов стали.Вот обзор основных типов:

Углеродистая сталь

Это основная сталь, хороший углерод и железо, хотя могут быть добавлены другие очень небольшие количества других элементов.

Три основные категории — это сталь с низким, средним и высоким содержанием углерода. Чем больше углерода, тем тверже и сильнее. Меньше углерода — дешевле, мягче и проще в производстве.

Углеродистая сталь чаще всего используется в качестве конструкционного строительного материала, в простых механических компонентах и ​​в различных инструментах.

Легированная сталь

Считайте это генетически модифицированной сталью. Легированная сталь производится путем добавления в смесь других элементов. Это изменяет свойства и, по сути, делает металл настраиваемым. Это чрезвычайно распространенный вид металла, потому что его производство, как правило, очень дешево.

Обычные легирующие элементы для стали включают марганец, ванадий, хром, никель и вольфрам. Каждый из этих элементов по-разному изменяет свойства металла.

Например, легированная сталь может придать дополнительную прочность высокопроизводительным зубчатым колесам, повысить коррозионную и износостойкость медицинских имплантатов, а также увеличить давление, с которым могут справиться трубопроводы. Обычно его считают рабочей лошадкой в ​​мире металла.

Нержавеющая сталь

Технически это разновидность легированной стали, но в таких массовых количествах существует так много видов, что обычно ей присваивается отдельная категория. Эта сталь специально ориентирована на устойчивость к коррозии.

Это в основном просто сталь с заметным содержанием хрома. При коррозии хром создает супертонкий барьер, замедляющий образование ржавчины. Если соскрести преграду, сразу образуется новая.

Вы увидите это много на кухнях; ножи, столы, посуда, все, что соприкасается с пищей.

Не очень забавный факт: То, что что-то сделано из нержавеющей стали, не означает, что не может ржаветь. Различные составы в разной степени предотвращают ржавление.Нержавеющая сталь, используемая для обработки соленой воды, должна быть особенно устойчивой к коррозии, чтобы не гнить. Но все виды нержавеющей стали ржавеют, если за ними не ухаживать должным образом.

Если вы хотите узнать больше о нержавеющих сталях (и о том, как их идентифицировать), щелкните здесь, чтобы получить мое руководство.

Железо (кованое или литое)

Несмотря на то, что это очень старомодный металл (особенно распространенный в «железный век»), он все еще имеет множество современных применений.

Во-первых, это основной ингредиент стали.Но помимо этого, вот еще несколько приложений и объяснение того, почему используется железо:

  • Кухонная посуда (например, сковороды) — Пористая поверхность позволяет кулинарным маслам пригорать и создавать естественную антипригарную поверхность
  • Дровяные печи — Чугун имеет чрезвычайно высокую температуру плавления, поэтому печь может выдерживать высокие температуры
  • Тяжелое оборудование основания и рамы — этот тяжелый металл снижает вибрацию и обеспечивает жесткость.

Интересный факт: Железо — шестой по распространенности элемент во Вселенной.

Алюминий

Что касается металлов, то это действительно современный металл. Впервые алюминий был произведен в 1825 году, и с тех пор он стал основой для некоторых крупных достижений.

Например, из-за своего удивительного отношения прочности к весу это металл, который в значительной степени отвечает за полет и доставку человека на Луну. Он легко формируется (податливый) и не ржавеет, что делает его отличным средством для изготовления банок из-под газировки. И, что (возможно), самое главное, из него можно сделать очень тонкий лист, который можно использовать для приготовления барбекю из свежевыловленной рыбы до идеального влажного состояния.

Хотя процесс производства алюминия немного сложнее, чем некоторых других металлов, на самом деле это чрезвычайно распространенный металл. Это самый распространенный цветной металл (не содержащий железа) на планете.

Пока он не ржавеет, он окисляется. На самом деле железо — единственный металл, который по определению «ржавеет». При контакте с солью алюминий подвержен коррозии. Однако , а не , подвергнется коррозии при контакте с водой. Это делает алюминий действительно полезным для изготовления таких вещей, как пресноводные лодки.

Магний

Магний — действительно крутой металл. Это примерно 2/3 веса алюминия и сопоставимая прочность. Из-за этого это становится все более распространенным явлением.

Чаще всего это сплав. Это означает, что он смешивается с другими металлами и элементами, чтобы получить гибридный материал с определенными свойствами. Это также может упростить использование в производственных процессах.

Одно из самых популярных применений магния — автомобильная промышленность.Магний считается шагом вперед по сравнению с алюминием, когда речь идет о высокопрочном снижении веса, и он не является астрономически более дорогим.

Некоторые места, где вы можете увидеть магний на мощных автомобилях, находятся в колесных дисках, блоках двигателя и картерах трансмиссии.

Однако у магния есть недостатки. По сравнению с алюминием он легче подвержен коррозии. Например, он подвергнется коррозии при контакте с водой, а алюминий — нет.

В целом это примерно вдвое дороже алюминия, но на производстве с ним справиться быстрее.

Интересный факт: Магний действительно огнеопасен и горит очень горячо. Металлическую стружку, опилки и порошок необходимо аккуратно утилизировать во избежание взрывов.

Медь

Медь — еще один старомодный металл. Сегодня вы часто будете видеть его в виде сплава (подробнее об этом позже) или в достаточно чистом состоянии.

Общие приложения включают электронику, водопроводные трубы и гигантские статуи, олицетворяющие свободу. Медь образует патину или окисленный слой, который фактически предотвращает дальнейшую коррозию.По сути, он станет зеленым и перестанет разъедать. Это может продержаться веками.

Статуя Свободы сделана из меди и покрыта патиной или оксидным слоем , что придает ей зеленовато-голубой оттенок.

Если вам нужна дополнительная информация о том, почему этот металл становится зеленым, то эта статья может показаться вам интересной.

Латунь

Латунь — это сплав меди и цинка. Полученный желтый металл действительно полезен по ряду причин.

Его золотистый цвет делает его очень популярным для украшения. Этот металл часто используется в антикварной мебели в качестве ручек и ручек.

Кроме того, он чрезвычайно пластичен, что означает, что его можно выковывать и формовать. Вот почему он используется для духовых инструментов , таких как тубы, трубы и тромбоны. Им легко придать форму (условно говоря), и они прочные.

Латунь также является отличным материалом для подшипников, поскольку она хорошо скользит по другим металлам.

Еще одно отличное свойство латуни — она ​​никогда не искрится. Например, стальной молоток может вызвать искру, если по нему ударить определенным образом. Латунный молоток этого не делает. Это означает, что латунные инструменты отлично подходят для областей, где могут находиться легковоспламеняющиеся газы, жидкости или порошки.

бронза

Это сделано в основном из меди, но также содержит около 12% олова. В результате получается металл, который тверже и жестче, чем обычная медь.

Бронза также может быть сплавом с другими элементами.Например, распространенными легирующими элементами являются алюминий, никель, цинк и марганец. Каждый из них может очень заметно изменить металл.

Бронза имеет огромное историческое значение (как в бронзовом веке) и ее легко найти. Часто это можно увидеть в массивных церковных колоколах. Бронза твердая и прочная, поэтому при ударе не трескается и не гнется, как другие металлы. Так же звучит лучше.

Современное использование включает скульптуры и искусство, пружины и подшипники, а также гитарные струны.

Интересный факт: Бронза была первым искусственным сплавом.

цинк

Это интересный металл своей полезностью.

Сам по себе он имеет довольно низкую температуру плавления, что делает его очень простым в отливке. Материал легко течет при плавлении, и получаемые куски получаются относительно прочными. Его также очень легко расплавить, чтобы переработать.

Цинк — очень распространенный металл, который используется в покрытиях для защиты других металлов.Например, часто можно увидеть оцинкованную сталь, которая в основном представляет собой сталь, погруженную в цинк. Это поможет предотвратить ржавление.

Интересный факт: Ежегодно производится около 12 миллионов тонн цинка, половина из которых идет на цинкование.

Титан

Это действительно потрясающий современный металл. Впервые он был обнаружен в 1791 году, впервые создан в чистом виде в 1910 году и впервые изготовлен вне лаборатории в 1932 году.

Титан на самом деле очень распространен (седьмой по содержанию металл на Земле), но его действительно сложно очистить.Вот почему этот металл такой дорогой. Это также действительно стоит:

  • Титан биосовместим, а это значит, что ваше тело не будет сопротивляться и отвергать его. Медицинские имплантаты обычно изготавливают из титана.
  • Его соотношение прочности к весу выше, чем у любого другого металла. Это делает его чрезвычайно ценным для всего, что летает.
  • Это действительно коррозионно-стойкое покрытие.
  • Нитрид титана (титан, который вступает в реакцию с азотом в вакууме с высокой энергией) — это безумно твердое покрытие с низким коэффициентом трения, которое наносится на металлические режущие инструменты.

Интересный факт: Причина того, что титан сопротивляется коррозии, заключается в том, что он мгновенно вступает в реакцию с кислородом, создавая очень тонкий и прочный барьер, защищающий металл. Если соскрести барьер, мгновенно образуется новый. Это вроде как самоисцеление.

Бонусный забавный факт: Титан не встречается в природе сам по себе. Он всегда связан с другим элементом.

вольфрам

Вольфрам имеет самую высокую температуру плавления и самый высокий предел прочности на разрыв среди всех чистых металлов.Это делает его чрезвычайно полезным.

Около половины всего вольфрама используется для производства карбида вольфрама. Это безумно твердый материал, который используется для изготовления режущих инструментов (для горнодобывающей и металлообрабатывающей промышленности), абразивов и тяжелого оборудования. Он может легко резать титан и жаропрочные жаропрочные сплавы.

Он получил свое название от шведских слов « tung sten », что означает «тяжелый камень». Это примерно в 1,7 раза больше плотности свинца.

Вольфрам также является популярным легирующим элементом.Поскольку его температура плавления настолько высока, он часто сплавлен с другими элементами, чтобы сделать такие вещи, как сопла ракет, которые должны выдерживать экстремальные температуры.

Адамантий

Это неправда.

К сожалению.

Никель

Никель — действительно распространенный элемент, который используется повсюду. Чаще всего он применяется в производстве нержавеющих сталей, где повышает прочность и коррозионную стойкость металла. Фактически, почти 70% мирового никеля используется для производства нержавеющей стали.

Интересно, что никель составляет всего 25% в составе пятицентовой американской монеты.

Никель также является обычным металлом, используемым для гальваники и легирования. Его можно использовать для нанесения покрытия на лабораторное и химическое оборудование, а также на все, что должно иметь действительно гладкую полированную поверхность.

Интересный факт: Никель получил свое название из средневекового немецкого фольклора. Никелевая руда очень похожа на медную руду, но когда старые горняки не могли добыть из нее медь, они обвинили в этом озорного спрайта по имени Никель.

Кобальт

Это металл, который долгое время использовался для изготовления синего пигмента в красках и красителях. Сегодня он в основном используется для изготовления износостойких высокопрочных стальных сплавов.

Кобальт очень редко добывается сам по себе, это побочный продукт производства меди и никеля.

Олово

Олово действительно мягкое и податливое. Он используется в качестве легирующего элемента для изготовления таких вещей, как бронза (1/8 олова и 7/8 меди). Это также основной ингредиент олова (85–99%).

Интересный факт: Когда вы сгибаете кусок жести, вы слышите нечто, называемое «жестяной крик». Это пронзительный звук реорганизации кристаллической структуры (называемый двойникованием ).

Свинец

Свинец действительно мягкий и податливый, а также очень плотный и тяжелый. У него очень низкая температура плавления.

В 1800-х годах было обнаружено, что свинец на самом деле является довольно токсичным веществом. Вот почему в наше время он не так распространен, хотя не так давно его все еще находили в красках и пулях.

Свинец — это нейротоксин, который, помимо прочего, может вызывать повреждение мозга и проблемы с поведением.

Тем не менее, он все еще используется в современном мире. Например, он отлично подходит для защиты от излучения. Его также иногда добавляют в медные сплавы, чтобы облегчить их резку. Смесь свинца и меди часто используется для улучшения характеристик подшипников.

Кремний

С технической точки зрения кремний — это металлоид. Это означает, что он обладает как металлическими, так и неметаллическими качествами.

Например, он похож на металл. Он прочный, блестящий, гибкий и имеет высокую температуру плавления. Однако он ужасно проводит электричество. Отчасти поэтому он не считается полноценным металлом.

Тем не менее, это обычный элемент, который можно найти в металлах. Использование его для легирования может немного изменить свойства металла. Например, добавление кремния к алюминию облегчает сварку.

высококачественных металлических изделий | Продвинутый поставщик металла

Magellan Metals — ведущий поставщик металлов высшего качества и современных металлических сплавов, обеспечивающих исключительную ценность и полезные свойства для отраслей по всему миру.Независимо от того, требуются ли для вашего проекта стандартные металлы, такие как нержавеющая сталь, экзотические никелевые сплавы или металлы из евросплавов, Magellan Metals производит и поставляет специальные металлы, которые требуются вашим проектам.

Производство высококачественного металла

Если вы ищете большие или маленькие партии высококачественных металлических материалов, Magellan Metals поддерживает хорошо укомплектованный инвентарь нужной вам продукции. Magellan Metals — ваш эксклюзивный производитель и поставщик металлических изделий премиум-класса, включая никелевые сплавы, титановые металлы, нержавеющую сталь, евросплавы и специальные сплавы.Наши специалисты по металлу предоставляют следующие дополнительные услуги:
  • Изготовление на заказ
  • Короткое время выполнения
  • Быстрая доставка
  • Сертификация ISO

Metal Service Solutions

Независимо от того, требует ли ваш проект упрочнения старения и обработки растворами, бесцентрового шлифования, сборных фитингов или рентгеновских или ультразвуковых испытаний, передовые услуги по металлу Magellan могут предоставить вам решения для отделки, которые требуются вашим металлическим изделиям.Выбирая партнерство с Magellan, вы присоединяетесь к команде, которая ценит упорный труд, преданность делу клиентов и качество продукции.

Сертификат ISO

Magellan Metals — сертифицированный по ISO 9001 поставщик промышленных металлов для мировой авиакосмической, нефтегазовой, энергетической, нефтехимической, биомедицинской, фармацевтической и других отраслей высокотехнологичной обрабатывающей промышленности. Мы сертифицируем продукцию по большинству требований ASME, ASTM, AMS и военных, а также по большинству международных стандартов, включая полный DIN EN10204 3.1 аттестация.

Высококачественные металлические материалы для отдельных или полных банкнот

В Magellan Metals мы можем поставлять отдельные изделия или полные счета из любого из наших высококачественных металлических материалов. Нет слишком маленького запроса. Мы предлагаем быстрые ответы на запросы клиентов и специализируемся на быстрой доставке больших и малых партий никелевых сплавов, сплавов нержавеющей стали, металлов титана и т. Д.

Поставки специальных металлов для предприятий по всему миру

Мы поставляем никелевые сплавы, титан, дуплексные сплавы и нержавеющую сталь предприятиям по всей территории США и более чем в 45 странах.Мы можем соответствовать большинству требований ASME, ASTM, AMS и военных спецификаций, а также можем ссылаться на большинство международных стандартов, включая полную сертификацию DIN 3.1b.

Свяжитесь с Magellan Metals, чтобы получить решения и услуги премиум-класса сегодня

Ищете способы сэкономить на качественных металлических материалах и услугах? У Magellan Metals есть решения! Свяжитесь с нами для получения дополнительной информации о нашем ассортименте стандартных металлов и труднодоступных экзотических сплавов на складе или позвоните нам по телефону 203-838-5700, и мы с радостью обсудим ваши требования к проекту.

Official A Township Tale Wiki

Металл
Детали
Тип Товар

Существует десять различных типов металлов, которые можно использовать для изготовления инструментов, оружия и валюты. У каждого есть свои особенности, которые определяют, как он работает после разрушения, а также насколько сложен процесс кузнечного дела. Что касается изображения, верхний ряд содержит основные металлы: медь, железо, золото, серебро и мифрил.В нижнем ряду представлены пять сплавов: палладий, красное железо, электрум, виридиум и валян.

Основные металлы []

Все эти металлы получают путем плавки соответствующих руд в Кузнице. В порядке редкости они

  • Медь
  • Золото
  • Утюг
  • Серебро
  • Mythril

Из перечисленных выше металлов золото уникально тем, что его можно штамповать в монеты с помощью пресса для монет в ратуше из расчета 5 монет на один слиток.

Сплавы []

Металлы и их внешний вид

Смешивание металлов позволяет кузнецу лучше использовать пять основных руд, которые можно найти в шахтах. Как правило, долговечность, повреждение и сохранение тепла (насколько трудно кузнечное дело) сплава связаны с одним из составляющих металлов. Например, Red Iron сочетает в себе повреждение и сохранение тепла железа с долговечностью меди для общего улучшения. По этой причине большинство игроков предпочитают использовать сплавы, а не основные металлы.Все сплавы, за исключением палладия, можно выплавлять либо из руды, либо из слитков, как показано в таблице ниже. Однако это приводит к немного разным соотношениям в зависимости от того, какой метод вы выберете.

Чтобы создать сплавы на PCVR, вы должны пройти боевые испытания. Первое испытание открывает сплавы железа, второе — сплавы серебра, а третье — мифриловые сплавы. На данный момент в версии Quest есть доступ к изготовлению всех сплавов с самого начала. []
Руда Материал 1 Материал 2 Результат
Красный Утюг 4 Медная руда 3 Железная руда 1 слиток
Палладий
Электрум * 3 Серебряная руда 2 Золотая руда 1 слиток
Виридиум * 3 Золотая руда 2 мифриловой руды 1 слиток
Валян 6 мифриловой руды 4 Серебряная руда 1 слиток
Слиток Материал 1 Материал 2 Результат
Красное железо * 1 медный слиток 1 железный слиток 1 слиток
Палладий * 1 красный железный слиток 4 Серебряная руда 1 слиток
Электрум 1 серебряный слиток 1 золотой слиток 1 слиток
виридиум 1 золотой слиток 1 мифриловый слиток 1 слиток
Валян * 2 мифриловых слитка 1 серебряный слиток 1 слиток

Характеристики []

Урон []

Металлы у каждого есть свой множитель урона.Экспериментируя, можно предположить, что все сплавы наносят больше вреда, чем любой из его ингредиентов. Кроме того, по состоянию на 0.0.22.1 предполагается, что относительная степень повреждения сплавов и металлов следующая:

 [Повреждение]
Золото (18,2%) <Медь (22,7%) <Железо (31,8%) <Палладий (50%) <Красное железо (50%) <Электрум (50%) <Виридиум (59,1%) <Серебро (68,2%) <Мифрил (86,4%) <Валян (100%)
 

Эти значения получены при тестировании игроков и не должны рассматриваться как точные.Однако были приложены усилия, чтобы попытаться получить лучшие данные. Процентили после названия сплава или металла - это прочность металла по отношению к Валяну. Хотя эти данные были созданы для рубящего оружия, они согласуются с другими типами повреждений.

В результате из Валяна делают самые прочные инструменты и оружие (с точки зрения повреждений, а не прочности).

Подробный список повреждений (обычные удары без каких-либо навыков, баффы против определенных врагов или фантомной защиты):

0.25 = 1 бар Золото Медь Утюг Красное железо палладий Электрум Виридиум Серебро Мифрил Валян
Заднее короткое лезвие 0,08
Копье с коротким лезвием 0.08
Кинжал с коротким лезвием 0,08
Лезвие копья 0,08 0.24
Рапира 0,10 0,30
Primus Blade 0,10 0,30
Жатка 0,08
Коса 0.10 0,29
Головка долота 0,10 0,29
Кирка 0,04 0.04
Лопата 0,04
Серп 0,10
Короткое декоративное лезвие 0.03
Прямой декоративный нож 0,05
Изогнутый декоративный нож 0,05
Длинный изогнутый декоративный нож 0.06
Молот мастера 0,04 0,11
Кузнечный молот 0,06
Боевой молот 0.08 0,09
Большой молот 0,16
Топор 0,07 0.25
Боевой топор 0,11 0,40
Топор старшины 0,10
Великий топор 0.22 0,39 0,67
Длинное лезвие 0,13 0,41
Широкое лезвие 0,17 0.52
Великий клинок 0,17 0,53
Длинная стрелка 0,05 0,12 0,15
Длинная стрелка Острие на стрелке 0.32 0,80 0,96
Сай 0,08
Вакидзаси 0,10 0.30
Нагината 0,12 0,36
Катана 0,13 0,39

Прочность []

Металлы Каждый из них имеет разную долговечность, которая соответствует тому, как долго прослужит инструмент / оружие, поэтому это главное соображение при длительном использовании или тяжелом шлифовании.По состоянию на 0.0.23.0, Palladium имеет лучшую прочность, а Valyan - немного выше средней прочности. Мы не собирали цифры, но относительный рейтинг по долговечности таков:

 [Прочность]
Золото <Медь <Виридиум <Железо <Серебро <Электрум <Красное железо <Мифрил <Валян <Палладий
 

(порядок обновлен после разговоров с разработчиками, исходя из первоначального предположения сообщества: Золото <Медь <Электрум <Виридиум <Железо <Серебро <Красное железо <Валян <Мифрил)

Это влияет на все профессии, требующие нанесения ударов с использованием оружия или инструментов.

Вес []

Каждые Металл имеет вес, который определяет, насколько тяжелыми инструменты, сделанные из этого металла, сделают игрока (больший вес приводит к снижению скорости движения). Затем эти инструменты (или сами металлические слитки) можно взвесить с помощью измерителя веса.

Металлы от самых легких до самых тяжелых:

 [Вес]
Мифрил <Медь <Железо <Красное железо / Палладий <Серебро <Электрум <Виридиум <Золото / Валян
 

* При работе с Электрумом он довольно тяжелый, только полоски легче Mythril.

Подробный список веса:

Горное дело []

Металлы могут добывать до 1 уровня выше их урона. Золото добывает уголь, песчаник, золото и медь. Медь добывает все, что может золото, кроме железа. Железо добавляет серебро, а серебро может добывать Мифрил. Ржавая кирка может добывать уголь, медь и песчаник.

Сплавы более сложные, но в настоящее время список материалов, из которых можно добывать Мифрил, включает Серебро, Палладий, Виридий, Мифрил и Валян.

Отопление []

Скорость, с которой инструмент из данного металла нагревается в кузнице.

Сохранение тепла []

Скорость, с которой инструмент из данного металла остывает при извлечении из кузницы. Этот аспект Metal напрямую связано с тем, насколько легко выковать оружие. Инструменты с низким тепловыделением быстро охлаждаются и требуют, чтобы игроки неоднократно помещали их в кузницу для повторного нагрева. Красное железо прекрасно удерживает тепло, а Валян хуже всех.

Диаграмма металлов

[]

Металл Тип ед. Урона Отопление Охлаждение Прочность Уровень твердости Вес
Медь База 22,7% 30-е годы 2 2 2
Утюг База 31,8% - 4 4 3
Золото База 18.2% 5 с - 1 1 9
Серебро База 68,2% 10 с - 5 5 6
Мифрил База 86,4% 16с - 8 8 1
Палладий Сплав 50% 13 с - 10 10 5
Красный утюг Сплав 50% 20 с - 7 7 4
Электрум Сплав 50% 40-е годы - 6 6 7
виридиум Сплав 59.1% 15 с - 3 3 8
Валян Сплав 100% 1:40 - 9 9 10

Время ковки []

Ниже приведена таблица с подробным описанием времени, необходимого для изготовления двуручного меча из каждого типа металла с использованием молотка Red Iron Forging Hammer .

Предупреждение. Эти данные не являются абсолютными, поскольку всегда есть место для ошибок, поэтому не рассматривайте их как гарантированное время, необходимое для создания предмета.

Металл Время заняло
Медь 14 секунд Утюг 24 секунды
Золото 18 секунд
Серебро 33 секунды
Мифрил 1 минута 18 секунд
Красный утюг 36 секунд
Электрум 1 минута 31 секунда
Палладий 51 секунд
виридиум 50 секунд
Валян 15 минут 46 секунд

Общая информация []

Все сплавы в игре были названы сообществом:

  • Красное железо по имени: imAa # 6616
  • Палладий, названный по имени: Таинственный друг / сослуживец Зерифакса # 4276
  • Electrum по имени: Медведь # 0220
  • Виридиум, присвоенный: o98 № 3673
  • Валян назван: №105 # 1046 (Tcooper)

Названия сплавов из активов ATT: Evinon Steel (Валян), Орчи (Виридиум), Красное железо, Белое золото (Электрум) и Карси (Палладий).Сталь и бронза также присутствуют в активах, но их еще нельзя переплавить, так как некоторых руд еще нет в игре (например, олова).

Типы металлов и их применение

Металлы и достижения в производственных процессах привели к промышленной революции. Это привело к экспоненциальному росту человеческой цивилизации, приведя нас туда, где мы находимся сегодня. Сегодня нас окружают самые разные металлы. С компьютера, который вы используете для чтения этой информации, на зажимы в сантехнике. Сегодня находят применение более восьмидесяти различных типов металлов.

Виды металлов и их классификация

В природе доступно большое количество металлов. Их можно классифицировать по-разному, в зависимости от того, какое свойство или характеристику вы используете в качестве критерия.

Классификация по содержанию железа

Самый распространенный способ их классификации - по содержанию железа.

Когда металл содержит железо, его называют черным металлом. Железо придает материалу магнитные свойства, а также делает его подверженным коррозии.Металлы, не содержащие железа, относятся к цветным металлам. Эти металлы не обладают магнитными свойствами. Примеры включают, но не ограничиваются ими, алюминий, свинец, латунь, медь и цинк.

Периодическая таблица

Классификация по атомной структуре

Их также можно классифицировать на основе их атомной структуры в соответствии с периодической таблицей. Когда это сделано, металл может быть известен как щелочной, щелочноземельный или переходный металл. Металлы, принадлежащие к одной группе, ведут себя аналогичным образом при взаимодействии с другими элементами.Таким образом, они имеют схожие химические свойства.

Магнитные и немагнитные металлы

Другой способ отличить металлы - это посмотреть, как они взаимодействуют с магнитами. На этом основании можно разделить металлы на магнитные и немагнитные.

В то время как ферромагнитные металлы сильно притягиваются к магнитам, парамагнитные металлы демонстрируют лишь слабое взаимодействие. Наконец, есть группа диамагнитных металлов, которые довольно слабо отталкиваются от магнитов.

Железо, его сплавы и их свойства

Все металлы обладают схожими механическими свойствами материалов.Но при тщательном рассмотрении один металл будет иметь небольшое преимущество над другим по определенным свойствам. При создании сплавов можно изменять свойства путем смешивания чистых элементов.

При выборе металла для конкретного применения необходимо учитывать множество факторов, чтобы найти наиболее подходящий вариант. Эти факторы включают температуру плавления, стоимость, простоту обработки, достаточный запас прочности, доступное пространство, температурный коэффициент, тепловую и электрическую проводимость, плотность и т. Д.Давайте посмотрим на некоторые популярные металлы и на то, почему они выбираются для их применения.

Утюг

Эйфелева башня сделана из кованого железа

Не будет преувеличением назвать железо источником жизненной силы нашей цивилизации. Примерно 5 процентов земной коры состоит из железа. Таким образом, это невероятно простой металл. Однако чистое железо - нестабильный элемент. При первой возможности он вступает в реакцию с кислородом воздуха с образованием оксида железа.

Для извлечения железа из руды используется доменная печь.Чугун получают из первой ступени доменной печи, которую можно дополнительно рафинировать для получения чистого чугуна. Это железо часто попадает в стали и другие сплавы. Почти 90 процентов производимых металлов составляют черные металлы.

Например, сталь

- это черный металл, который находит множество применений. Мы не можем понять истинный потенциал железа, не узнав о стали.

Сталь

Чистое железо прочнее других металлов, но оставляет желать лучшего.Во-первых, чистое железо не устойчиво к коррозии. Чтобы железо не ржавело, нужно потратить много денег и энергии. Во-вторых, он также чрезвычайно тяжелый из-за высокой плотности. Эти недостатки могут затруднить строительство и обслуживание конструкций.

Добавление углерода к железу до некоторой степени смягчает эти недостатки. Эта смесь железа и углерода до определенных пределов известна как углеродистая сталь. Добавление углерода к железу делает его намного прочнее, а также придает другие замечательные характеристики.

Другие элементы могут быть добавлены в следовых количествах для отражения их свойств. Давайте посмотрим, как классифицировать сталь и на что она способна.

Какие типы стали и их применение?

Сталь - популярный строительный материал благодаря своим превосходным свойствам. Сегодня в наличии более 3500 марок стали. Он имеет высокую прочность на разрыв и высокое отношение прочности к весу. Это означает большую прочность на единицу массы стали. Это позволяет использовать стальные детали и компоненты небольшого размера, но при этом прочные.

Сталь

также чрезвычайно прочна. Это означает, что стальная конструкция может служить дольше и противостоять внешним факторам лучше, чем другие альтернативы. Он также пластичен и может принимать необходимые формы без ущерба для его свойств. В зависимости от содержания железа сталь подразделяется на три категории.

Углеродистая сталь Классификация AISI
Арматура из низкоуглеродистой стали
  • Низкоуглеродистая сталь. До 0,25% углерода в чугуне дает нам низкоуглеродистую сталь, также известную как мягкая сталь.Он используется для труб при умеренном давлении. Арматурные стержни и двутавровые балки в строительстве обычно изготавливаются из низкоуглеродистой стали. Для него также подходят любые области применения, требующие большого количества стали без особого формования или гибки. Примером может служить корпус корабля.
  • Сталь среднеуглеродистая. Содержит 0,25… 0,6% углерода. Области применения среднеуглеродистой стали включают те, которые требуют высоких пределов прочности и пластичности. Они находят применение в зубчатых передачах и валах, железнодорожных колесах и рельсах, стальных балках в зданиях, мостах и ​​т. Д.Другое применение - сосуды под давлением, за исключением случаев, когда они содержат холодные газы или жидкости из-за его склонности к холодному растрескиванию.
  • Высокоуглеродистая сталь. Сталь с содержанием углерода более 0,6% является высокоуглеродистой. Эта сталь тверже и хрупче, чем две предыдущие. Он находит применение при изготовлении долот и режущих инструментов. Отличные качества включают твердость и хорошую устойчивость материала к износу. Его также можно использовать в прессах и для изготовления сверл.

Хотя все вышеупомянутые стали обычно называют углеродистыми сталями, они содержат другие элементы для улучшения определенных свойств.Например, хром для коррозионной стойкости или марганец для улучшения прокаливаемости и прочности на разрыв.

Легированные стали

Этот тип металла содержит множество элементов для улучшения различных свойств. Металлы, такие как марганец, титан, медь, никель, кремний и алюминий, могут быть добавлены в различных пропорциях.

Это улучшает закаливаемость, свариваемость, коррозионную стойкость, пластичность и формуемость стали. Легированные стали применяются в электродвигателях, подшипниках, нагревательных элементах, пружинах, шестернях и трубопроводах.

Используемая ударопрочная инструментальная сталь

Инструментальная сталь - это металл, который также находит применение в производстве рельсов, проволоки, труб, валов и клапанов. Инструментальная сталь в основном используется в автомобильной, судостроительной, строительной и упаковочной отраслях.

Различные типы металлов

Помимо черных металлов, у нас большой выбор цветных металлов. Каждый из них обладает определенными качествами, которые делают их полезными в разных отраслях.

Алюминий

Алюминий получают в основном из бокситов.Он легкий, прочный и функциональный. Это самый распространенный металл на Земле, и его применение повсюду.

Это связано с его такими свойствами, как долговечность, малый вес, коррозионная стойкость (подробнее о типах коррозии алюминия можно узнать здесь), электропроводность и способность образовывать сплавы с большинством металлов. Он также не намагничивается и его легко обрабатывать.

Медь

Говоря о различных типах металлов, нельзя не упомянуть медь и ее сплавы.Он имеет долгую историю, потому что его легко сформировать. Даже сегодня это важный металл в отрасли. В чистом виде в природе не встречается. Таким образом, плавка и извлечение из руды необходимы.

Металлы - хорошие проводники, и медь выделяется больше, чем другие. Благодаря отличной электропроводности он находит применение в электрических цепях в качестве проводника. По проводимости уступает только серебру. Также он обладает отличной теплопроводностью. Вот почему многие кухонные принадлежности сделаны из меди.

Латунь

Латунь - это сплав меди и цинка. Количество каждого из металлов может варьироваться в зависимости от требуемых электрических и механических свойств металла. Он также содержит следовые количества других металлических элементов, таких как алюминий, свинец и марганец. Латунь - отличный кандидат для использования в приложениях с низким коэффициентом трения, таких как замки, подшипники, сантехника, музыкальные инструменты, инструменты и арматура. Он незаменим в искробезопасных приложениях для предотвращения искр и позволяет использовать его в легковоспламеняющихся средах.

бронза

Бронза - это тоже сплав меди. Но вместо цинка в бронзе есть олово. Добавление других элементов, таких как фосфор, марганец, кремний и алюминий, может улучшить его свойства и пригодность для конкретного применения. Бронза хрупкая, твердая, хорошо сопротивляется усталости. Он также имеет хорошую электрическую и теплопроводность и коррозионную стойкость. Бронза находит применение при изготовлении зеркал и отражателей. Используется для электрических разъемов.Благодаря своей коррозионной стойкости он находит применение в подводных частях и судовой арматуре.

Титан

Титан - важный конструкционный металл, поскольку он прочен и легок. Он также обладает высокой термостойкостью даже при температурах до 480 градусов по Цельсию. Благодаря этим свойствам он находит применение в авиакосмической промышленности. Военная техника - один из вариантов использования этого металла. Поскольку титан также устойчив к коррозии, его также используют в медицинских целях. Титан также используется в химической и спортивной промышленности.

Цинк

Оцинкованная сталь

Цинк - широко распространенный металл, находящий широкое применение в медицинском и промышленном секторах. Его основное применение - гальванизация стали. Это защищает сталь от коррозии. Цинк также используется для производства отливок для электротехнической, аппаратной и автомобильной промышленности. Поскольку цинк имеет низкий электрохимический потенциал, его применение включает в себя морское применение для предотвращения коррозии других металлов за счет катодной защиты. Жертвенные цинковые аноды могут защитить клапаны, трубопроводы и резервуары.

Свинец

Свинец - это хорошо поддающийся механической обработке, коррозионно-стойкий металл. Трубопровод и краска представляют собой некоторые варианты использования. Свинец использовался как антидетонационный агент в бензине. Позже было обнаружено, что побочный продукт этого свинца вызывает серьезные осложнения для здоровья.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *