Вид станка: Виды станков: токарные, сверлильные, расточные, шлифовальные, ЧПУ

Содержание

какие бывают разновидности, виды и классификация промышленных станков по типам (таблица)

Классификация промышленных станков по группам. Наиболее распространенные типы производственных установок: фрезерные, токарные, сверлильные, шлифовальные и другие. Различие моделей по типу управления и материалу обработки.

Что такое промышленный станок?

Промышленный станок – агрегат для обработки металлов, камня, дерева, стекла и других производственных материалов. Главными элементами станины выступают шлифовальный круг, сверло, режущие устройства. Оборудование задействуют на предприятиях и в цехах как отдельную единицу либо как часть автоматизированной линии. Самые востребованные в промышленности – металлообрабатывающие машины, с их помощью налаживается серийное производство или единичный выпуск заготовок.

Какие бывают станки?

Станки – сложные агрегаты, используются для придания устройству формы, высверливания необходимых отверстий. Без них не обойтись в машиностроении, промышленности, на мелких производственных предприятиях. Устройства могут быть стационарные и мобильные. Не передвижные станины с силовой установкой надежнее в работе по сравнению с малогабаритными машинами.

Номер

Группа станка

Классификация по типу

1

2

3

4

5

6

7

8

9

1

Токарный

Автомат и полуавтомат

Револьверный

Сверлильно-отрезной

Карусельный

Винторезный

Многорезцовый

Для модельных заготовок

Другой токарный

Одношпиндельный

Многошпиндельный

2

Сверлильный, расточный

С вертикальным расположением сверла

Одношпиндельный полуавтомат

Многошпиндельный полуавтомат

Координатно-расточный с одной стойкой

Радиально-сверлильный

С горизонтальной расточкой

Алмазно-расточный

С горизонтальным расположением сверла

Другой сверлильный

3

Шлифовально-полировочный

Круглошлифовальный

Внутришлифовальный

Обдирочно-шлифовальный

Специализированный

Заточный

Полировальный с квадратной или круглой станиной

Полировальный, притирочный

Другой с абразивным инструментом

4

Комбинированный

Универсальный

Полуавтомат

Автомат

Электрохимический

Электроискровой

Электроэрозионный, ультразвуковой

Анодно-механический

5

Для обработки резьбы и зубьев

Зубострогальный для цилиндрических колес

Для резьбы на зубьях конических колес

Зубофрезерные для шпицевых валиков и цилиндрических колес

Зубофрезерные для червячных колес

Для обработки торцов зубьев

Резьбофрезерные

Зубоотделочные

Для шлифовки зубьев и резьбы

Другой резьбо- и зубоотделочный

6

Фрезерные

С вертикальной фрезой

Непрерывного действия

Копировальный и гравировальный

Вертикальный бесконсольный

Продольный

Универсальный широкого спектра

Горизонтальный консольный

Другой фрезерный

7

Строгальный, долбежный, протяжный

Продольный с одной стойкой

Продольный с двумя стойками

Поперечно-строгальный

Долбежный

Горизонтальный протяжный

Вертикальный протяжный

Другой строгальный

8

Разрезной

Отрезной с рабочим органом:

Правильно-отрезной

Пила

токарный резец

отрезной круг

фрикционный блок

ленточная

дисковая

ножовочная

9

Другой

Для обработки труб и муфт

Пилонасекательный

Правильно- и бесцентровообдирочный

Для тестирования инструментов

Делительный агрегат

Балансировочный

Таблица 1. Типы станков

Токарные станки

Агрегаты первой группы составляют 30 % станочного парка промышленных предприятий. Их используют практически при всех операциях по обточке металлических и других изделий, имеющих форму вращаемых тел:

  • корректировка заготовок;
  • нарезка резьбы;
  • проточка пазов;
  • резка металлов;
  • обработка торцов деталей.

Токарные станки незаменимы при изготовлении болтов, втулок, шайб, осей и других деталей конической или цилиндрической формы. Сырая заготовка крепится фиксирующим патроном шпинделя:

  • с проходным отверстием;
  • самоцентрирующийся;
  • с независимым перемещением кулачков;
  • со штоком.

Чем мощнее конструкция шпинделя и привода станка, тем выше производительность токарного оборудования при резьбе по деталям и тем большая заготовка на нем обрабатывается.

Схема обычного токарно-резцового станка с основными узлами: 1 – шпиндельная бабка; 2 – суппорт для закрепления режущего элемента; 3 – задняя бабка; 4 – станина; 5, 9 – тумбы-подставки; 6 – фартук; 7 – ходовой винт; 8 – ходовой валик; 10 – коробка подач вращательных движений от шпинделя к суппорту; 11 – гитара сменных шестерен; 12 – пусковое устройство и двигатель; 13 – коробка скоростей; 14 – шпиндель.

Производители предлагают разные типы токарных станков крупногабаритных размеров для предприятий, мини-машины по металлу, удобные для частного пользования.

Сверлильные станки

Эти установки не менее популярны среди мастеров и на производстве, чем токарные. Их используют для создания сквозных и глухих отверстий заготовок и сверлильных работ по листовому металлу.

Примечание: преимущества агрегатов перед дрелью – высокая точность и возможность просверливать отверстия большого диаметра.

Вертикально-сверлильные станки распространены и часто используются при работе со сравнительно небольшими деталями. Принцип действия устройства заключается в подвижности заготовки относительно рабочего органа.

Основные узлы вертикально-сверлильного станка: 1 — станина в виде колонны; 2 — двигатель; 3 — сверлильная головка; 4 — рычаги переключения коробок скоростей и подач; 5 — ручная подача; 6 — лимб контроля глубины обработки; 7 — шпиндель; 8 — шланг для подачи СОЖ; 9 — столешница; 10 — рукоятка подъема столешницы; 11 — основа; 12 — короб электроустановки.

Настольные одношпиндельные станки применяют в приборостроении для изготовления маленьких отверстий. Аналогичные многошпиндельные машины значительно повышают производительность.

Сверлильно-долбежные станки способны выполнять несколько операций, работать фрезой, но эти опции отличаются ограниченными возможностями.

Для сверления больших отверстий используются радиально-сверлильные агрегаты, при обработке которыми заготовка остается неподвижной, а шпиндель перемещается.

Примечание: крупногабаритные радиально-сверлильные станки переносятся подъемным краном непосредственно к самой детали. Другие модификации оснащаются тележками и при работе фиксируются башмаками.

Расточные агрегаты

Станки предназначаются для работы по металлу, без них не обойтись в серийном и единичном производстве. На этих машинах можно:

  • сверлить;
  • растачивать;
  • зенкеровать;
  • нарезать резьбу;
  • обтачивать и фрезеровать цилиндрические поверхности;
  • подрезать торцы.

Необходимый для операции инструмент крепится на борштангу в отверстии шпинделя, расположение которого может быть горизонтальным или вертикальным.

Горизонтальный расточный станок.

Вертикальный расточный станок.

Координатно-расточные станки выполняют сходные действия, различие состоит в возможности сделать предварительную разметку.

Алмазно-расточные агрегаты отличаются высокой точностью, и при растачивании погрешность не превышает 3–5 мкм.

Шлифовальные и заточные

Этой группой станков проводится наружная и внутренняя обработка заготовок в форме тел вращения, шлифовка резьбы, зубьев колес, разрезаются детали, затачиваются инструменты. Исходя из типа шлифовки и обрабатываемой поверхности, станки бывают:

  • круглошлифовальные;
  • внутришлифовальные;
  • бесцентрово-шлифовальные;
  • плоскошлифовальные;
  • специальные.

Примечание: главный рабочий инструмент в шлифовальных станках – абразивный круг или брусок, который снимает с поверхности тонкий слой металла.

Шлифовальные станки различают по видам подачи:

  • движение детали вместе со столом и перемещение шлифовального круга – круглошлифовальный станок;
  • вращение заготовки или шлифовального круга и перемещение бабки шлифовального круга – внутришлифовальный станок;
  • движение стола и периодическое поперечное перемещение бабки с вертикальным сдвигом абразивного круга – плоскошлифовальный станок.

Притирочные агрегаты

Металлорежущие притирочные машины применяются для тонкой доводки и притирки – поверхность детали обрабатывается до идеального состояния с помощью мелкозернистой абразивной смеси, которая снимает тонкий слой металла или другого материала. Используются:

  • алмазная пыль;
  • наждак;
  • электрокорунд.

Порошок наносится на плоские или круглые притиры из чугуна, низкосортной стали, свинца, меди, дерева и удерживается керосином или скипидаром, смешанным со специальной смазкой или пастой (окись алюминия, хрома, венская известь).

Важно: доводка детали происходит на медленной скорости с постоянным изменением направления.

Станки оснащаются регулируемыми и нерегулируемыми притирами. Для первых характерна разрезная рубашка, внутренний конус и устройство для изменения диаметра доводочного элемента.

Хонинговальные установки

Группа шлифовально-притирочных агрегатов для обработки наружных поверхностей деталей цилиндрической формы. Это втулки, валики, пальцы и др. Для резки в шпинделе закрепляется хонинговальная головка с абразивными брусками.

Стандартно выпускают станки с горизонтальным, вертикальным и наклонным расположением одного или нескольких шпинделей.

Зубообрабатывающие машины

Станки для нарезки и отделки цилиндрических зубьев колес в зависимости от вида рабочего инструмента бывают:

  • зубофрезерные;
  • зубошлифовальные;
  • зубопротяжные;
  • зубострогальные и пр.

Агрегаты справляются с функциями нарезки зубьев, чистовой и отделочной обработкой цилиндрических и конических колес с прямыми, косыми и криволинейными зубьями, шевронных, червячных колес, зубчатых реек.

Методы нарезки:

Копирование – фреза имеет идентичные зубьям детали впадины и продвигается вдоль впадин колеса, оставляя отпечаток. После работы над отдельной впадиной деталь разворачивают на окружной шаг и приступают к следующей. Неудобство такого способа обработки в том, что для каждого колеса нужна отдельная фреза, а замена отнимает время. Однако работать с таким агрегатом просто.

Информация: метод копирования выгоден при единичном производстве или ремонте. Для серийного используют зубодолбежные установки.

Обкатка – распространенный способ с высокой производительностью и точностью нарезаемых колес. Один инструмент обрабатывает различные по числу зубьев заготовки. Режущие кромки инструмента последовательно располагаются в зубьях колес и прокатываются, сцепленные друг с другом. При методе обкатки чаще всего используются червячные фрезы.

Помимо основных способов обработки зубчатых колес, существуют другие методы с высокой производительностью:

  • долбление всех впадин детали сразу фрезой с аналогичными впадинами на режущей кромке;
  • протяжка всех зубьев;
  • прокатка способом холодной или горячей обработки;
  • волочение или накатка без снятия верхнего слоя материала;
  • прессование зубьев (подходит для синтетических изделий).

Резьбообрабатывающие и резьбонакатные

Это пятая группа промышленных станков, которые используются в машиностроении для нарезки резьбы. К ним относятся резьбофрезерные, гайконарезные, резьбо- и червячно-шлифовальные машины.

Способы нарезки в зависимости от рабочего инструмента:

  • внутренняя резьба – применяются резцы, гребенчатые фрезы, метчики;
  • наружная резьба – гребенчатые и дисковые фрезы, резцы, винторезные и круглые плашки;
  • многозаходные винты и червяки – вихревые головки в условиях массового производства.

Информация: резьбонакатные агрегаты используют способ нарезки резьбы без снятия стружки с заготовки. Деталь сдавливается между плоскими или круглыми рабочими элементами и на ней отпечатывается нужная форма.

В станках с круглыми плашками изделие размещается между подвижной и неподвижной плашками. Затем двигающийся элемент подводится к заготовке, прижимает ее и накатывает резьбу несколькими оборотами детали.

Гайконарезные станки

Для изготовления изделий с точной резьбой на линиях серийного производства используются гайконарезные автоматы и полуавтоматы с прямыми или изогнутыми хвостовиками. Агрегаты могут быть одно- и многошпиндельными.

Фрезерные станки

Группа состоит из машин с режущим многолезвийным инструментом – фрезой, которая вращательными движениями обрабатывает поступательно движущуюся заготовку плоского или фасонного типа.

Широкий спектр выполняемых работ обеспечивается разнообразием фрез:

  • цилиндрические (а) – для обработки поверхностей;
  • дисковые (б) – для изготовления пазов;
  • концевые (в) – для обработки уступов, пазов, фасонных деталей;
  • торцевые (г) – для торцовки уступов, пазов, поверхностей;
  • фасонные (д) – для изготовления фасонных поверхностей.

Стрелки на рисунке указывают направление движения фрез и заготовок при резке.

Виды фрезерных станков

Консольные агрегаты оснащаются рабочим столом в виде консоли и горизонтально или вертикально расположенным шпинделем. Стол двигается в продольном, поперечном и вертикальном направлении относительно вала шпинделя. Возможности таких станков ограничены: могут изготавливать детали сравнительно небольшого веса и размера.

Универсальные станки отличаются оснасткой в виде поворотного стола, а широкоуниверсальные – поворотной шпиндельной головкой. Функционал таких машин расширенный.

Бесконсольные станки имеют жесткое основание для установки заготовки, стол двигается в поперечно-продольном направлении, а шпиндель совершает вертикальные перемещения. Предназначаются для обработки крупногабаритных деталей с солидной массой.

Продольно-фрезерные станки оснащаются столом, совершающим продольные перемещения. Шпиндель двигается поперечно и вертикально, поворачивается под заданным углом.

Установки карусельного и барабанного типа непрерывного действия имеют один или несколько вертикальных шпинделей, поочередно обрабатывающие поступающие детали.

Копировально-фрезерные станки выполняют контурную и фрезеровальную обработку по образцу.

Шпоночно-фрезерным агрегатам характерны возвратно-поступательные перемещения стола и планетарные движения шпинделя.

Классификация станков по возможному материалу обработки

Технические характеристики промышленных установок рознятся в зависимости от обрабатываемого материала. Чаще всего станочное оборудование требуется для работы с металлом и деревом. Для древесины можно использовать менее мощное оборудование, но с более точными настройками операций. По обработке металла требуется использование качественных инструментов и высокой мощности. Самые востребованные в производстве заготовок – токарные, сверлильные и фрезерные машины.

Классификация по типу управления

Постепенно уровень автоматизации на предприятиях повышается, станков с механическим управлением становится все меньше. Разделить машины по типу управления можно так:

  • ручное;
  • полуавтомат;
  • автомат;
  • ЧПУ – числовое программное управление;
  • компьютерное.

Последние способы контроля обеспечивают высокую точность настройки при обработке с минимальной погрешностью. Важный плюс – отсутствует необходимость в постоянном наблюдении за процессом производства – оператор вносит параметры перед запуском.

  • 29 августа 2020
  • 11355

Виды и особенности токарных станков по металлу

Содержание:

  1. 1. Токарно-винторезный
  2. 2. Токарно-фрезерный
  3. 3. Прочие виды токарных станков
  4. 4. Правильное использование

Токарная – самая действенная и распространенная обработка металлических деталей, таких как тела вращения и крепежные элементы. На токарных станках можно изготовить самые различные втулки, валы, муфты, болты, гайки, фланцы и даже декоративные изделия — ножки мебели, дверные ручки и многое другое. Полноценный автоматизированный токарный станок, прототип того, что есть сейчас, появился во второй половине XIX века в Америке. С тех пор техника сильно изменилась, появилось несколько видов оборудования, каждый из которых служит для определенного типа работ: обрабатывать заготовки небольшого размера, изготавливать детали серийно, выполнять как токарные, так и фрезерные операции и прочее.

Не зависимо от вида любой из токарных станков используется для обработки заготовки резанием до получения необходимой формы. Но в зависимости от вида техники может иметь дополнительные особенности, например, возможность сверления и фрезерования. Поэтому, зная, что помимо резания «умеет» устройство, Вы сможете выбрать то, которое подойдет именно для Вашего вида деятельности. Кроме этого у Вас будет возможность сэкономить, например, не покупая два станка вместо одного комбинированного. И ещё, что очень удобно — Вы сразу определитесь, какая оснастка и расходные материалы Вам потребуются.

Основные различия между разными видами станков заключаются в их конструкции, изменение которой добавляет новые возможности. Тем не менее каждое устройство имеет такие основные узлы как:

Станина – элемент, на котором монтируются все рабочие части.

Передняя бабка – узел, в котором расположена коробка скоростей и шпиндель, коробка передач – механизм, передающий движение от шпинделя к суппорту через ходовой винт или валик.

Фартук – элемент, преобразующий переданное движение в поступательное.

Суппорт  — узел, состоящий из каретки, перемещающейся параллельно или перпендикулярно к оси станка. Он сообщает поступательное движение режущему инструменту.

Задняя бабка – подвижный элемент, который служит для закрепления вращающихся центров.

Токарно-винторезный

Такой станок имеет ход пиноли задней бабки, поэтому может быть оборудован сверлильным патроном. Благодаря этому он подойдет не только для вытачивания деталей различного профиля, выполнения углублений и канавок, выравнивания, подрезания в размер, но и для сверления отверстий и нарезания внутренней и внешней резьбы разными способами (плашки, метчики, резцы). Все токарно-винторезные станки предназначены для обработки заготовок из черных и цветных металлов и являются одним из самых востребованных в инструментальном производстве, приборостроении или часовой промышленности.

Оснастка для такого оборудования — различные резцы, сверла, метчики, плашки и развертки для металла.

При выборе станка такого вида важно учесть

  • Максимальный диаметр заготовки, которую можно обработать, его определяет расстояние от оси оборудования до станины.  На устройствах, которые Вы найдете в нашем интернет-магазине можно обрабатывать заготовки 330 – 660 мм в диаметре.
  • Предельную длину детали. Токарно-винторезные станки, которые представлены у нас, допускают обработку заготовок длиной до 2032 мм. Они подойдут как для использования в промышленности, так и для установки в частную мастерскую.
  • Вес. Чем он больше, тем более высокой жесткостью будет обладать установка. А значит, тем более точной будет работа. В нашем ассортименте есть оборудование массой от 600 до 4250 кг.

Токарно-фрезерный

Уникальное устройство для обработки металла (черного и цветного), дерева и пластика, сочетающее в себе два станка – токарный и фрезерный, поэтому с его помощью возможно как выполнять проходное точение заготовки, нарезать резьбу, накладывать фаски, производить выборку галтелей, так и вырезать прямые и криволинейные пазы или сверлить отверстия на наружных поверхностях.

И все это благодаря наличию вертикальной фрезерной части со вторым шпинделем помимо основных элементов. Оборудование можно использовать в инструментальном, часовом и приборостроительном производствах, применять в частных мастерских, а также устанавливать  в школах для трудового обучения учащихся.

Преимущества:

  • Доступность. Стоимость одного комбинированного станка будет ниже стоимости двух.
  • Компактные размеры. Одно устройство займет значительно меньше места, чем два, что важно, если мастерская небольшая.

Режущий инструмент для токарно-фрезерного станка включает куда больше разновидностей, здесь и резцы, сверла, плашки, метчики, развертки, фрезы для металла, и стамески для деревообработки, в зависимости от планируемых работ.

При выборе данного оборудования помимо расстояния между центрами и максимально возможного диаметра заготовки также важно учесть и максимальный диаметр концевой и торцевой фрез. Этот параметр определяет,  каким режущим инструментом Вы сможете работать при фрезеровании детали. В нашем ассортименте представлены устройства, в которых можно использовать оснастку 13 и 30 мм.

Прочие виды токарных станков

Кроме перечисленных выше токарных станков по металлу, существуют ещё несколько видов оборудования. Из-за высокой стоимости и  больших габаритов оно применяется на крупных серийных производствах различных деталей механизмов машин – валов, втулок, изделий сложного профиля с отверстиями, не соосными с осью детали и пр.. К подобным станкам относятся:

Токарно-карусельный – оборудование для обработки заготовок больших габаритов (свыше 2000 мм диаметром).

Токарно-револьверный – станок для изготовления деталей из калиброванного прутка. Режущий инструмент в данном станке крепится на вращающемся барабане, в который вставляются отдельные блоки с закрепленной в них оснасткой.

Станки с ЧПУ и обрабатывающие центры – отдельный вид станков, который сводит участие мастера в процессе обработки к минимуму и обеспечивает высокую точность. Такое оборудование может выполнять великое множество операций, при этом оператору отводится роль наблюдателя и его основная задача — выемка готовых деталей, все остальные действия станок делает самостоятельно по заданной программе, которую составляет специалист.

Отметим:

существуют станки, которые могут быть переоборудованы для обработки не только металла, но и дерева (Jet BD-7). Они имеют возможность монтажа упора под стамески. Обратите на это внимание, если Вы занимаетесь работами с различными материалами.

Правильное использование

В нашем интернет-магазине Вы сможете найти токарно-фрезерные станки Энкор-Корвет и токарно-винторезные — Jet и Proma. Приобретая какой-то из них, советуем учесть несколько факторов, чтобы создать необходимые условия для использования, рекомендованные производителем:

  • Температура воздуха, которая должна быть в мастерской  от 1 до 35°С.

Обратите внимание: если станок был помещен в отапливаемое помещение после нахождения на холоде (на улице или в здании при отрицательных температурах) ему нужно прогреться перед включением. Рекомендованное время 8 часов. Если начать использовать оборудование до этого – произойдет поломка при включении из-за конденсата на электродвигателе.

  • Влажность воздуха не более 80% (при температуре до 25 °С), в противном случае может возникнуть опасность поражения электрическим током и опять же выхода из строя двигателя.
  • Поверхность пола, на которую устанавливается оборудование, должна быть максимально ровной, чтобы не было вибраций или смещения центра, что ведет к потере жесткости системы.
  • А также требуется подходящее напряжение в сети. Это 220 В или 380 В в зависимости от модели станка. Данную информацию Вы найдете в карточке товара и в инструкции по эксплуатации техники.
  • Запаситесь защитной экипировкой (очки, роба, головной убор, закрытая обувь и при необходимости маска или респиратор). Её использование во время работы защитит Вас от травм.

Таким образом, если вы планируете изготавливать тела вращения, втулки, шайбы, фланцы и прочее, без необходимости вырезать прямоугольные пазы или, например, сверлить отверстия в наружных поверхностях, выгодным для Вас будет приобретение токарно-винторезного станка.

Если же есть необходимость ещё и во фрезеровании детали обратите внимание на токарно-фрезерное устройство. Его приобретение обойдется Вам гораздо дешевле, чем покупка двух разных станков. Более подробно ознакомиться с представленным у нас оборудованием Вы можете в карточках товара. Если у Вас возникнут какие-либо вопросы – позвоните нашим менеджерам по телефону или через сайт, звонок бесплатный.

Виды работ, выполняемых на токарных станках

 

Токарные станки предназначены для механической обработки поверхностей вращения. На этих станках обрабатывают самые разнообразные детали: валы и оси, втулки и зубчатые колеса, гильзы и стаканы и т. д.. Объединяет эти детали то, что они состоят в основном из поверхностей вращения: цилиндрических, конических, торцовых, сферических, резьбовых и др.. Валы и оси (рис. 1.1, а) характеризуются длиной, которая обычно в несколько раз больше наибольшего диаметра. Часто вал имеет несколько ступеней различного диаметра для посадки зубчатых колес, различных кулачков, подшипников, хотя иногда в машинах используют и гладкие валы и оси.

Втулки и гильзы (рис. 1 . 1 , б) имеют соосные цилиндрические внутренние и внешние поверхности высокой точности. Отношение длины таких деталей к диаметру колеблется от 0,8 до 2. При обработке втулок и гильз технологическая задача заключается в достижении соосности внутренних и внешних цилиндрических точных поверхностей. Такая же задача возникает и при обработке дисков, например заготовки зубчатого колеса (рис. 1 . 1 , в). Эти детали отличаются от предыдущих большим диаметром внешних поверхностей и малой длиной. Кроме деталей типа тел вращения, на токарных станках обрабатывают поверхности вращения на корпусных деталях (отверстия под подшипники валов), в рычагах и других деталях.

Рис. 1.1.   Детали, обрабатываемые на токарных станках

Рис. 1.2.   Точение внешних цилиндрических поверхностей

Среди других типов станков токарные по праву имеют наибольший удельный вес в станочном парке страны. Универсальность этих станков иллюстрируется перечислением основных (далеко не всех) видов работ, выполняемых на них.

Виды работ, выполняемых на токарных станках

На рис. 1.2 представлены способы точения цилиндрических внешних поверхностей. Заготовке 1 придается главное вращательное вижение, указанное стрелкой А, Резцу 2 сообщается прямолинейное движение, параллельное оси вращения заготовки — движение подачи, показанное стрелкой Б.

В результате сочетания этих двух движений вершина резца описывает относительно оси вращения заготовки винтовую линию, образуя на заготовке цилиндрическую обработанную поверхность 3. При обработке вершина резца проходит длинный путь, и поэтому резец после нескольких деталей изнашивается и требует переточки. На рис. 1.2, б представлен второй способ получения цилиндрической поверхности — точение заготовки 1 резцом 2 с поперечной радиальной подачей (стрелка В).

В этом случае цилиндрическая поверхность 3 образуется всей режущей кромкой, установленной параллельно оси заготовки. Таким способом можно точить короткие поверхности длиной до 25—30 мм, так как при снятии широкой стружки возрастает вероятность возникновения вибраций. Вместе с тем без переточки ђдним резцом можно обработать большее число деталей, так как нуть, проходимый резцом при обработке одной детали, значительно ороче, чем в предыдущем случае.

. На рис. 1.3, а показаны движения заготовки 1 и резца 2 при подрезании плоского торца с поперечной подачей.

Рис. 1.3. Точение торцовых поверхностей

Особенности данного способа точения плоской поверхности аналогичны особенностям точения цилиндрической поверхности с продольной подачей резца. При подрезании торца с продольной пода чей резца, режущая кромка которого перпендикулярна оси вращения заготовки (рис. 1.3, б), как и при точении цилиндрической поверхности с поперечной подачей, форма обрабатываемой поверхности 3 образуется линией режущей кромки резца. Плоская торцовая поверхность 3 (рис. 1.3, в) может образоваться при проточке прямоугольной канавки отрезным резцом с поперечной подачей или отрезке детали.

Точение конических поверхностей. Для образования конической поверхности резец необходимо перемещать под заданным углом к оси вращения заготовки. Небольшой угол конусности можно получить на токарном станке смещением центра 2 закрепления заднего конца заготовки 1 (рис. 1.4, а), тогда ось ее вращения наклоняется к направлению продольного движения резца на угол а, тангенс которого равен отношению величины смещения к длине заготовки.

Рис. 1.4. Точение конических поверхностёй:

а — со смещением заднего центра; б — поворотом направляющих частей верхней части суппорта; в — по копиркой линейке; г — широким резцом с поперечной подачей

При обработке конических поверхностей 1 с большим углом необходимо изменять направление движения резца З поворотом направляющих каретки 2 верхней части суппорта (рис. А, б) либо применением копировального устройства (рис. 1.4, в), которое при включении продольной подачи с помощью копировальной линейки 1, установленной под углом а, перемещает суппорт с резцом 2 в этом же направлении. Короткие конические поверхности 1 (рис. I А, г) можно обработать широким резцом 2 с поперечной подачей.

Обработка фасонных поверхностей. На токарном станке обрабатывают фасонные поверхности. Один из самых простых способов — точение с поперечной подачей фасонного резца 2 (рис. 1.5, а), имеющего профиль контура 1. Фасонные поверхности 1 большой длины (рис. 1.5, б) обрабатывают с помощью копира 2, позволяющего при постоянной продольной подаче инструмента 3 перемещать его в поперечном направлении в соответствии с профилем копира 2 (рис. 1.5, б) . Станки с ЧПУ, в которых можно одновременно управлять продольной поперечной подачей, имеют возможность задавать необходимую траекторию резца 1 путем изменения величины подач по осям Х и Z (рис. 1.5, в).

Рис. l.5. Точение фасонных поверхностёй:

а—фасонным резцом с поперечной подачей; б—по копиру; в—путем изменения продольной и поперечной подач

Станки с ЧПУ, в которых можно одновременно управлять продольной поперечной подачей, имеют возможность задавать необходимую траекторию резца 1 путем изменения величины подач по осям Х и Z (рис. 1.5, в) .

Нарезание резьбы. Одним из наиболее универсальных способов обработки резьбовых поверхностей является нарезание резьбы резцом 2 (рис. 1.6, а) с профилем при вершине, соответствующим профилю впадины резьбы 1.

Рис. 1.6. Нарезание внешней резьбы:

а — резьбовым резцом; б — гребенкой; в плашкой; г — охватывающее (вихревое) фрезерование; д — наружное фрезерование голанкой

Чтобы получить заданную точность резьбы, необходима жесткая кинематическая связь шпинделя с инструментом: за один оборот заготовки резец должен переместиться с высокой точностью на величину шага резьбы. Чтобы прорезать впадину резьбы на полную глубину, нужно выполнить несколько рабочих ходов, углубляя с каждым ходом резец в заготовку. Гребенка 2, имеющая несколько режущих зубьев разной высоты (рис. 1.6, б), позволяет нарезать резьбу 1 за один рабочий ход.

Более простой способ; нарезание резьбы 1 плашкой 2 (рис. 1.6, в), для которой продольная подача необходима лишь в начальный момент врезания, после чего плашка сама навинчивается на заготовку по нарезанному участку резьбы. Используя приспособления для вращения инструмента 2 (рис. 1.6, г, Д), на токарных станках осуществляют фрезерование резьбы 1.

Обработка внутренних поверхностей. На рис. 1.7 показаны способы обработки внутренних поверхностёй: растачивание цилиндрической поверхности 1 (рис. 1.7, а) с продольной подачей резца 2; прорезание канавки 1 прямоугольного или фасонного профиля с поперечной подачей (рис. 1.7, 6), сверление и развертывание отверстий 1 (рис. I .7, в) инструментом

                     г)                          

Рис. 1.7. Точение внутренних поверхностей

2 с продольной подачей; нарезание резьбы 1 резцом 2 (рис. 1.7, г) и метчиком З (рис. 1.7, д).

Другие виды обработки. На токарных станках обрабатывают поверхности путем пластического деформирования поверхностных слоев металла: накатывание рифлений 1 (рис. 1.8, а) роликом 2 и обкатывание поверхности 1 гладким роликом 2 (рис. 1.8, б) для ее упрочения и уменьшения шероховатости (вместо шлифования)

Рис. 1.8 Токарная обработка поверхностным пластическим деформированием

На токарных станках осуществляют обработку поверхностей, требующую сложных кинематических связей рабочих органов станка. К таким способам обработки можно отнести точение по копиру и методом двух подач. Для получения заданного профиля требуется согласованное движение инструмента по двум координатам (см. рис. 1.5, б, в) : продольного по координате Z и поперечного по координате Х перемещений.

Продольное профильное точение (рис. 1.9, а) требует трех согласованных между собой движений: вращения шпинделя с заготовкой 1, продольного перемещения суппорта с инструментом и вращения инструмента 2, в процессе которого он как бы катится по обрабатываемой поверхности.

Рис. 1.9. Точение вращающимся инструментом

Если инструмент имеет сложный профиль, то он позволяет обработать поверхность такого же профиля. Так, на рис, 1.9, б показана схема нарезания резьбы червяка 1 долбяком 2, выполненным в виде зубчатого колеса с режущими зубьями. Долбяк установлен на суппорте, и при продольной подаче ему сообщается вращательное движение. В результате обкатного движения зубья долбяка нарезают модульную резьбу червяка.

Некруглые детали получают путем сообщения инструменту 2 качательного (рис. 1.10, а) движения, согласованного с вращением заготовки 1. Суппорту З (рис. 1.10, б) с.инструментом 2 может сообщаться при этом и продольная подача.

Рис. 1.10. Точение некруглых деталей

1 — заготовка; 2 — инструмент; З — механизм дополнительного движения инструмента

Аналогично может выполняться некруглый торцовый паз и другие некруглые поверхности.

Источник: ТОКАРНЫЕ СТАНКИ И РАБОТА НА НИХ. Тишенина Т. И. Федоров Б. В.

Токарный станок — виды, принцип работы и применение, оcобенности

Токарный станок – это металлорежущее оборудование для обработки металлических деталей точением, а также используемый для ряда других операций. Основным рабочим инструментом является резец. Благодаря большому разнообразию форм и размеров резцов на токарном станке можно изготавливать самые различные детали с цилиндрическими, коническими и сферическими поверхностями, производить обработку различных металлов.

Виды оборудования

Токарные станки классифицируются по ряду параметров, в первую очередь по назначению, универсальности или специализации оборудования, по его конструктивным особенностям. Также они подразделяются по:

  • классу точности при обработке детали;
  • автоматизации;
  • массе;
  • мощности двигателя и другим параметрам.

По действующей в РФ классификации существуют следующие типы токарных станков:

  • одно- и многошпиндельные автоматы и полуавтоматы;
  • отрезные;
  • винторезные;
  • револьверные;
  • карусельные;
  • лобовые;
  • специализированные;
  • специальные.

Принцип работы

Обработка резанием производится при контакте резца с вращающейся заготовкой. Вращательное движение осуществляет шпиндель или планшайба, необходимое усилие и частоту обеспечивает электродвигатель через ременную передачу и коробку скоростей. Резец крепится в суппорте и может передвигаться в поперечном и продольном направлении. От скорости движения суппорта зависит амплитуда подачи.

Станки могут быть с вертикальной или горизонтальной компоновкой. Это зависит от положения шпинделя, на который устанавливается заготовка. Вертикальная компоновка оптимальна для обработки тяжелых и коротких деталей, горизонтальная – для длинных с небольшим или средним диаметром. 

Основные преимущества токарной обработки:

  • Высокая сложность изготавливаемых деталей.
  • Возможность работы с любыми металлами.
  • Высокое качество и точность обработки.
  • Большая производительность.

Конструкция

Независимо от типа и модели, в конструкции станка есть несколько основных частей:

  • Станина – основной элемент оборудования предназначенный для размещения всех узлов и систем.
  • Фартук – узел преобразующий вращательное движение винта или вала в поступательное перемещение суппорта.
  • Шпиндельная бабка. Состоит из шпинделя и коробки скоростей.
  • Суппорт – узел станка для крепления рабочего инструмента и обеспечения требуемой для обработки заготовки движения подачи. Конструкция включает одну или несколько нижних кареток и верхнюю для установки резцедержателя.
  • Коробка подач – обеспечивает передачу движения на суппорт с помощью ходового винта.
  • Электрооборудование – электромотор, специальные элементы и органы управления.

Практически все элементы токарного оборудования унифицированы для упрощения технического обслуживания и ремонта.  

Особенности токарной обработки

Качество и производительность токарной обработки напрямую зависит от правильности выбора режима реза. Для расчета берутся справочные данные о скорости для различных материалов – сталь, медь, чугун и т. д. Также необходимы данные о плотности материала и других его параметрах. При правильном определении режима реза обеспечивается высокоэффективная и экономичная обработка, увеличивается срок службы инструмента и оборудования. 

Основными параметрами являются глубина резания, подача и скорость вращения. Также учитывается форма резца, материал инструмента и заготовки. При расчете определяется шероховатость заготовки и на основании этих данных – параметры обточки поверхностей. Глубина реза определяется исходя из припуска на обработку и требуемая чистота обточки. Также определяется скорость по табличным значениям и рассчитывается усилие реза.

ГОСТ

Основные параметры и нормы точности токарных станков регулирует ГОСТ 18097-93. Действуют и другие стандартны на различные типы токарного оборудования. 

Основные виды станков на производстве

Без станков сегодня не обходится ни одно производственное предприятие. Будь то небольшая частная фирма или крупный завод – в том или ином виде обрабатывающее оборудование задействуется во всех отраслях. Другое дело, что существует множество классификаций станочных агрегатов, особенности функционала, а также индивидуальное опциональное наполнение. Эти и другие факторы позволяют определить разные виды станков по конкретным признакам и характеристикам.

Что называют станками?

Главный отличительный признак данного оборудования в общей категории промышленных агрегатов и строительных инструментов – это наличие станины, на базе которой устраивается рабочий орган или система органов. Обрабатывающим элементом может быть и небольшой абразивный круг, и сверло, и алмазная коронка – это зависит от выполняемой операции. Чаще всего общий вид станка представляется как массивная конструкция с рабочей оснасткой, платформой подачи, фиксаторами, двигателем и т. д. Но в бытовых и мелкосерийных мастерских вполне находят применение и установки скромных размеров. Более того, если раньше к станкам обязательно относили только стационарные агрегаты, то сегодня среди них немало и мобильных устройств. Причем грань между ручным электроинструментом и малогабаритным станком не всегда четко определяется даже изготовителями. И все же наличие станины, силовой установки и органов обработки позволяет относить оборудование к полноценным станкам. К каким именно – это уже другой вопрос.

Токарные станки

Одна из самых популярных категорий производственных станков, которые охватывают все операции, связанные с обточкой деталей. Токарная установка позволяет корректировать формы заготовок, изначально имеющих тела вращения, осуществлять резку, проточку пазов и в некоторых случаях сверление. Можно сказать, целевым направлением работы такого оборудования является обслуживание заготовок в форме тел вращения, которые в процессе обточки получают коническую или цилиндрическую форму. Существуют разные виды токарных станков, которые задействуются в разных сферах промышленности. Например, деревообрабатывающие фабрики могут использовать крупные станки для создания округлого пиломатериала. В мебельной индустрии токарные агрегаты применяют для формирования ножек, лестничных балясин, ручек и т. д. Разделяют такие станки и по типу размещения – напольным или настольным способом.

Распиловочные станки

В этой категории представлены агрегаты, реализующие распил заготовок на две или несколько частей. Выделяют циркулярные, то есть дисковые станки, и ленточные. Первые осуществляют поперечный распил изделий, как правило, в поточном режиме. Циркулярные модели широко используются и в домашнем хозяйстве, поскольку такие операции достаточно востребованы. Ленточные виды станков позволяют выполнять продольный распил. Например, однопильный агрегат может разделить длинную доску на две части, схожие по длине. Двупильные, в свою очередь, единовременно производят распил в двух уровнях, позволяя из одной доски получить три. Специальные модификации дают возможность также формировать криволинейный рез или даже распил под определенным углом. Это агрегаты с автоматическим контролем подачи, выполняющие высокоточную обработку.

Фрезерные станки

Данный вид операции ориентирован на формирование профилей определенного типа. Чаще всего фрезеровкой обрабатываются плоские заготовки путем снятия кромок на определенную высоту. Станки такого типа используются в основном в мебельном производстве, где с их помощью получают фасонные элементы и аксессуары, носящие прежде всего декоративную функцию. Выпускают с помощью фрезера и полноценные строительные материалы – вагонку, плинтус, шипы, наличники и т. д. Более современные виды фрезерных станков поддерживают шаблонную обработку. Это копировально-фрезерные агрегаты, параметры реза которых подбираются автоматически в соответствии с размерами шаблонной детали.

Станки для отверстий

Сверлильные машины не менее востребованы и в частных мастерских, и на больших производствах. Они позволяют создавать глухие и сквозные отверстия, за счет которых в дальнейшем может осуществляться сборка. В отличие от электродрелей станки с функцией сверления обеспечивают более высокую точность и отличаются мощностью. Наиболее популярны вертикальные виды станков, поскольку они предполагают верхнее расположение шпинделя и дают свободу при обращении с рабочей платформой-столом. Некоторые модели способны выполнять наклонное сверление – оно тоже реализуется благодаря возможности изменения положения стола, на котором фиксируется заготовка. Отдельную категорию представляют сверлильно-долбежные станки. Они способны кроме непосредственно сверления также производить фрезерные операции. Фрезеровка получается не традиционной, а узконаправленной. Такие модели обычно выполняют пазовые ниши, технологические гнезда и другие конструкционные выемки для соединения.

Станки для поверхностной обработки

Широкий диапазон станочного оборудования представлен в сегменте моделей для поверхностной обработки деталей. Такие операции обобщенно позиционируются как шлифовка, но это лишь основная часть их функций, также встречаются и смежные задачи. Какой именно тип обработки будет выполнять конкретная машина, зависит от ее конструкционного исполнения. Так, барабанные станки ориентируются на шлифование досок, щитовых и листовых материалов по поверхности. По сути, реализуется неглубокая зачистка материала от заусенцев, выступающих неровностей и других дефектов. Более тонкую обработку выполняют кромкошлифовальные модели. На первый взгляд, эту же функцию осуществляют основные виды токарных станков, которые аккуратно подгоняют поверхность заготовок под нужную форму. Однако в данном случае обработка кромок акцентируется не только на цилиндрических деталях. Данная операция чаще задействуется для коррекции кромки по длине. Но есть в этой группе и машины, также ориентированные на детали цилиндрической формы. Это осцилляционные модели шлифовальных станков, но их используют не для декоративного улучшения, к примеру, балясин, а для подготовки стройматериала в виде бревен определенного размера.

Классификация по материалу обработки

Производственные станки часто получают конкретное назначение с точки зрения материала обработки. Древесина и металл – основные материалы, с которыми работает такое оборудование. Для древесных заготовок в машины закладывается не столь высокая мощность, но с другой стороны, обеспечиваются более гибкие настройки по рабочим операциям. Станки для металлических деталей, очевидно, требуют более высокого уровня силовой нагрузки, а также надежной элементной базы. Наиболее популярные виды станков по металлу – токарный, фрезерный, сверлильный и т. д. Особую категорию формируют винторезные станки, аналогов которых почти нет в группе деревообрабатывающих машин. Это агрегаты, которые производят нарезку резьбы. Кроме этого существуют специальные машины для работы с камнем, пластиком, композитными и другими менее популярными строительными и сырьевыми материалами.

Классификация по типу управления

Механизированные станки с ручным управлением постепенно уходят в прошлое. Такие модели встречаются разве что в небольших мастерских, которые работают со штучными заготовками. Крупные же предприятия стремятся переходить на полу- или полностью автоматизированные установки. В этом сегменте также существуют разные виды станков, отличающихся степенью автоматизации. Наиболее развитые машины с ЧПУ и компьютерным управлением дают возможность высокоточной регуляции настроек обработки без постоянного контроля со стороны пользователя. Оператору отводится лишь функция загрузчика исходных данных в электронную панель управления.

Заключение

Большая часть станков, которые сегодня используются на разных производствах, — это агрегаты для механической обработки. Резка, сверление, торцовка, шлифование – все эти операции реализуются путем воздействия металлическими насадками. Но их постепенно заменяют высокотехнологичные альтернативные станки. На производстве виды традиционных механических агрегатов как таковые особого значения не имеют. Главное, что учитывается, — это способность сохранять темпы обработки при должном обеспечении качества. Принципиально новые возможности в этом контексте открыли гидроабразивные, лазерные и термические станки с более высокими эксплуатационными свойствами. Их отдача с разных точек зрения более чем оправдана, но пока еще массовый переход на такие машины тормозят вопросы сложной организации их использования и высокая цена.

Назначение и устройство токарно-винторезного станка ТВ-6

Назначение и устройство токарно-винторезного станка ТВ-6

18. Назначение и устройство токарно-винторезного станка ТВ-6

 

В школьных мастерских применяются токарно-винторезные станки, которые предназначены для обработки тел вращения (валов, колец, дисков и др.), нарезания резьбы и сверления осевых отверстий.

В токарно-винторезном станке, как в любой другой технологической машине (сверлильном станке, токарном станке по дереву и др. ), есть электродвигатель, передаточный механизм, рабочий орган (шпиндель) и система управления.

Рис. 61. Виды механических передач, применяемых в токарном станке: а — ременная; б — зубчатая; в — реечная

В передаточном механизме станка применяются механические передачи: ременная (рис. 61, а), зубчатая (рис. 61, б), реечная (рис. 61, в). Детали передач, которые передают движение, называются ведущими (шкив с диамет­ром D1 и зубчатое колесо с числом зубьев Z1 на рис. 61). Детали, которые воспринимают это движение, называются ведомыми (шкив с диаметром D2 и шестерня с числом зубьев Z2 на рис. 61).

Важной характеристикой механических передач является передаточное отношение и. Оно показывает отношение частоты вращения ведущей детали к частоте вращения ведомой. Для ременной передачи оно может быть вычислено по формуле: и = D1 / D2, а для зубчатой передачи — и =  Z1 / Z2.  Например, при числе зубьев ведущего колеса Z1 = 40 и при числе зубьев ведомого колеса Z2 = 20 получаем: и = 40 / 20 = 2.

На рис. 62 показан общий вид школьного токарно-винторезного станка ТВ-6, а на рис. 63 — его кинематическая схема.

Рис. 62. Токарно-винторезный станок ТВ-6: 1,2 — рукоятки переключения скоростей вращения ходового вала и ходового винта; 3 — рукоятка переключения гитарного механизма; 4, 5 — рукоятки переключения скоростей вращения шпинделя; 6 — рукоятка поперечной подачи суппорта; 7 — рукоятка закрепления резцедержателя; 8 — рукоятка перемещения верхних салазок; 9 — рукоятка крепления пиноли; 10 — рукоятка крепления задней бабки; 11 — маховик подачи пиноли; 12, 13 — рукоятки управления механической подачей; 14 — кнопка; 15 — маховик перемещения суппорта; 16 — кнопки включения и отключения электродвигателя

 

Основанием станка является станина, установленная на двух тумбах. В левой тумбе находится электродвигатель. На станине крепятся передняя бабка, задняя бабка и суппорт.

В передней бабке размещена коробка скоростей, которая осуществляет изменение частоты вращения ведомого вала. На шпинделе крепится приспособление для крепления заготовки (токарный патрон и др.).

Коробка подач — это механизм, позволяющий изменять скорость перемещения суппорта.

Суппорт предназначен для закрепления и перемещения режущего инструмента или заготовки. Суппорт содержит трое салазок и резцедержатель.

Продольные салазки (каретка) прикреплены к фартуку суппорта и двигаются по направляющим станины механически или вручную с помощью рукоятки 15 (рис. 62).

Поперечные салазки перемещаются вручную рукояткой 6. Верхние салазки закреплены на поворотной плите и могут поворачиваться на угол до 40° (для точения конических поверхностей). Перемещаются верхние салазки вручную рукояткой 8. Для отсчета перемещений предусмотрены специальные устройства — лимбы.

Задняя бабка служит для поддержания конца длинных заготовок при помощи центра, а также для закрепления и подачи сверл и зенковок. Она может перемещаться по направляющим станины и закрепляться неподвижно рукояткой 10. В верхней части корпуса задней бабки находится пиноль, которую можно перемещать маховиком 11 и фиксировать рукояткой 9.

Точение деталей осуществляется за счет срезания резцом стружки с вращающейся заготовки. Вращательное движение заготовки называют главным. Главное движение обеспечивается за счет передачи движения по цепочке (рис. 63): двигатель — ременная передача — коробка скоростей — шпиндель с патроном и заготовкой.

Поступательное движение резца, которое обеспечивает непрерывность снятия слоя металла, называют движением подачи. Движение подачи обеспечивается цепочкой: двигатель — ременная передача — коробка скоростей — коробка подач — фартук суппорта — суппорт с резцом.

Рис. 63. Кинематическая схема токарно-винторезного станка ТВ-6:

1 — передняя бабка; 2 — суппорт; 3 — задняя бабка; 4 — фартук;

5 — коробка подач; 6 — электродвигатель; 7 — гитара

 

На предприятиях применяются более сложные токарно-винторезные станки. На таких станках закрепление заготовок, резцов, перемещение задней бабки выполняются механическим путем. В массовом производстве, где необходимо изготавливать большое количество одинаковых деталей, применяют токарные станки-автоматы, которые без участия человека по заданной программе выполняют подачу и закрепление заготовок, смену и закрепление инструмента, токарную обработку на необходимых режимах и др.

Токарные работы на предприятиях выполняют токари. Токарь — одна из наиболее распространенных рабочих профессий по обработке металла. Эта профессия подразделяется на несколько специальностей: токарь, токарь-карусельщик, токарь-револьверщик, токарь-расточник и др. Токарь должен знать устройство станков, основы черчения, назначение и правила применения различных инструментов и приспособлений, уметь пользоваться контрольно-измерительными приборами, разбираться в свойствах металлов и сплавов и др.

 

 Практическая работа

 Ознакомление с устройством токарно-винторезного у станка ТВ-6     

 

1. Осмотрите токарно-винторезный станок и назовите его основные части.

2. Рассмотрите кинематическую схему токарно-винторезного станка ТВ-6 (рис. 63) и разберитесь, каким образом передается от электродвигателя главное движение заготовке и движение подачи инструменту.

3. Изобразите в рабочей тетради кинематическую схему одной из частей станка (по указанию учителя).

  

 Новые термины:     Токарно-винторезный станок, механические передача (ременная, зубчатая, реечная), ведущее и ведомое звено передачи, передаточное отношение, станина, передняя бабка, коробка скоростей, коробка подач, суппорт, лимб, задняя бабка, главное движение, движение подачи, токарь.

  Вопросы и задания

1. Назовите виды механических передач.

2. Что такое ведущее звено передачи? Ведомое?

3. Что называется передаточным отношением механической передачи?

4. Укажите назначение токарно-винторезного станка и назовите операции, выполняемые на нем.

5. В чем сходство токарно-винторезного станка и токарного станка для обработки древесины?

6. Почему токарный станок относится к технологическим машинам?

7. Что такое главное движение и движение подачи?

Сайт управляется системой uCoz

Устройство и классификация токарно-винторезных станков

Токарно-винторезный станок

Устройство и классификация

Токарно-винторезные станки предназначены для обработки, включая нарезание резьбы, единичных деталей и малых групп деталей. Однако бывают станки без ходового винта. На таких станках можно выполнять все виды токарных работ, кроме нарезания резьбы резцом. Техническими параметрами, по которым классифицируют токарно-винторезные станки, являются наибольший диаметр D обрабатываемой заготовки (детали) или высота Центров над станиной (равная 0,5 D), наибольшая длина L обрабатываемой заготовки (детали) и масса станка. Ряд наибольших диаметров обработки для токарно-винторезных станков имеет вид: D = 100, 125, 160, 200, 250, 320, 400, 500, 630, 800, 1000, 1250, 1600, 2000 и далее до 4000 мм. Наибольшая длина L обрабатываемой детали определяется расстоянием между центрами станка. Выпускаемые станки при одном и том же значении D могут иметь различные значения L. По массе токарные станки делятся на легкие — до 500 кг (D = 100 — 200 мм), средние — до 4 т (D = 250 — 500 мм), крупные — до 15 т (D = 630 — 1250 мм) и тяжелые — до 400 т (D = 1600 — 4000 мм). Легкие токарные станки применяются в инструментальном производстве, приборостроении, часовой промышленности, в экспериментальных и опытных цехах предприятий. Эти станки выпускаются как с механической подачей, так и без нее. На средних станках производится 70 — 80% общего объема токарных работ. Эти станки предназначены для чистовой и получистовой обработки, а также для нарезания резьб разных типов и характеризуются высокой жесткостью, достаточной мощностью и широким диапазоном частот вращения шпинделя и подач инструмента, что позволяет обрабатывать детали на экономичных режимах с применением современных прогрессивных инструментов из твердых сплавов и сверхтвердых материалов. Средние станки оснащаются различными приспособлениями, расширяющими их технологические возможности, облегчающими труд рабочего и позволяющими повысить качество обработки, и имеют достаточно высокий уровень автоматизации. Крупные и тяжелые токарные станки применяются в основном в тяжелом и энергетическом машиностроении, а также в других отраслях для обработки валков прокатных станов, железнодорожных колесных пар, роторов турбин и др. электронное табло цена доступная для вас на сайте www.rusimpuls.ru

Сборочные единицы (узлы) и механизмы токарно-винторезного станка: 1 — передняя бабка, 2 — суппорт, 3 — задняя бабка, 4 — станина, 5 и 9 — тумбы, 6 — фартук, 7 — ходовой винт, 8 — ходовой валик, 10 — коробка подач, 11 — гитары сменных шестерен, 12 — электро-пусковая аппаратура, 13 — коробка скоростей, 14 — шпиндель

Все сборочные единицы (узлы) и механизмы токарно-винторезных станков имеют одинаковое название, назначение и расположение. Смотри рисунок вверху. Типичный токарно-винторезный станок 16К20 завода «Красный пролетарий» показан на рисунке внизу.

Общий вид и размещение органов управления токарно-винторезного станка мод. 16К20:

Рукоятки управления: 2 — сблокированная управление, 3,5,6 — установки подачи или шага нарезаемой резьбы, 7, 12 — управления частотой вращения шпинделя, 10 — установки нормального и увеличенного шага резьбы и для нарезания многозаходных резьб, 11 — изменения направления нареза-ния резьбы (лево- или правозаходной), 17 — перемещения верхних салазок, 18 — фиксации пиноли, 20 — фиксации задней бабки, 21 — штурвал перемещения пиноли, 23 — включения ускоренных перемещений суппорта, 24 — включения и выключения гайки ходового винта, 25 — управления изменением направления вращения шпинделя и его остановкой, 26 — включения и выключения подачи, 28 — поперечного перемещения салазок, 29 — включения продольной автоматической подачи, 27 — кнопка включения и выключения главного электродвигателя, 31 — продольного перемещения салазок; Узлы станка: 1 — станина, 4 — коробка подач, 8 — кожух ременной передачи главного привода, 9 — передняя бабка с главным приводом, 13 — электрошкаф, 14 — экран, 15 — защитный щиток, 16 — верхние салазки, 19 — задняя бабка, 22 — суппорт продольного перемещения, 30 — фартук, 32 — ходовой винт, 33 — направляющие станины


Винт | компонент машины | Britannica

Винт , в машиностроении, обычно круглый цилиндрический элемент с непрерывным спиральным ребром, используемый либо как крепежный элемент, либо как модификатор силы и движения.

Хотя пифагорейский философ Архит из Тарента (V век до нашей эры) является предполагаемым изобретателем винта, точная дата его первого появления в качестве полезного механического устройства неясна. Хотя изобретение водяного винта обычно приписывают Архимеду (3 век до н. Э.), Существуют свидетельства того, что подобное устройство использовалось для орошения в Египте в более раннее время.Шнековый пресс, изобретенный, вероятно, в Греции в I или II веке до нашей эры, использовался со времен Римской империи для глажки одежды. В I веке нашей эры деревянные винты использовались в прессах для вина и оливкового масла, а также использовались резаки (метчики) для нарезания внутренней резьбы.

Подробнее по этой теме

Ручной инструмент: Винтовой инструмент

Хотя Архимеду приписывают изобретение винта в 3 веке до нашей эры, его винт был не сегодняшним крепежом, а на самом деле…

На рисунке, который показывает основные типы винтов и головок винтов, используемых в настоящее время, колпачковые и крепежные винты используются для зажима частей машины вместе, либо когда одна из частей имеет резьбовое отверстие, либо вместе с гайкой. Эти винты растягиваются при затягивании, и создаваемая растягивающая нагрузка сжимает детали вместе. Крепежные винты имеют различные типы головок, большинство из которых имеют шлицы под отвертку. Они изготавливаются меньшего размера, чем болты и винты с головкой под ключ.

Установочный винт на рисунке входит в резьбовое отверстие в одном элементе; при затягивании чашеобразное острие вдавливается в сопрягаемый элемент (обычно вал) и предотвращает относительное движение.Установочные винты также бывают с коническими и цилиндрическими точками, которые подходят к соответствующим отверстиям, и с шлицевыми и квадратными головками.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Шпилька — это стержень с резьбой на обоих концах. Он постоянно ввинчен в один элемент и зажат гайкой на другом конце.

Саморезы образуют или нарезают сопрягаемую резьбу в таких материалах, как металлы, пластмассы, стекловолокно, асбест и пропитанная смолой фанера, когда они забиваются или вкручиваются в просверленные или полые (литые) отверстия. Саморез на рисунке образует резьбу, перемещая материал рядом с пилотным отверстием так, чтобы он обтекал винт. Самонарезающие винты имеют режущие кромки и полости для стружки, которые создают сопрягаемую резьбу за счет удаления материала.

Шурупы по дереву бывают самых разных диаметров и длин; при использовании больших размеров просверливаются пилотные отверстия, чтобы избежать раскалывания древесины. Стяжные шурупы — это большие шурупы по дереву, которые используются для крепления тяжелых предметов к дереву. Головы бывают квадратными или шестиугольными.

Винты, изменяющие силу и движение, известны как винты с приводом. Шуруповерт преобразует крутящий момент (крутящий момент) в тягу. Тяга (обычно для подъема тяжелого предмета) создается поворотом винта в неподвижной гайке. Используя длинный стержень для поворота винта, небольшое усилие на конце стержня может создать большую осевую силу. Столы для заготовок на станках линейно перемещаются по направляющим винтами, которые вращаются в подшипниках на концах столов и сопрягаются с гайками, закрепленными на станине станка. Подобное преобразование крутящего момента в усилие может быть получено либо путем вращения фиксированного в осевом направлении винта для приведения в движение гайки с фиксированным вращением вдоль винта, либо путем вращения гайки, фиксируемой в осевом направлении, для пропуска винта с фиксированным вращением через гайку.

6 простых механизмов: облегчение работы

На протяжении всей истории люди разработали несколько устройств, облегчающих работу. Наиболее известные из них известны как «шесть простых механизмов»: колесо и ось, рычаг, наклонная плоскость, шкив, винт и клин, хотя последние три на самом деле являются просто продолжениями или комбинациями первых. три.

Поскольку работа определяется как сила, действующая на объект в направлении движения, машина облегчает выполнение работы, выполняя одну или несколько из следующих функций, согласно лаборатории Джефферсона:

  • передача силы из одного места в другое. другой,
  • изменяет направление силы,
  • увеличивает величину силы или
  • увеличивает расстояние или скорость силы.

Простые машины — это устройства без движущихся частей или с очень небольшим количеством движущихся частей, которые облегчают работу.По данным Университета Колорадо в Боулдере, многие из современных сложных инструментов представляют собой просто комбинации или более сложные формы шести простых машин. Например, мы можем прикрепить длинную ручку к древку, чтобы сделать брашпиль, или использовать блок и снасть, чтобы подтянуть груз вверх по пандусу. Хотя эти машины могут показаться простыми, они продолжают предоставлять нам средства для выполнения многих вещей, которые мы никогда бы не смогли сделать без них.

Колесо и ось

Колесо считается одним из самых значительных изобретений в мировой истории.«До изобретения колеса в 3500 г. до н.э. люди были сильно ограничены в том, сколько вещей мы могли перевозить по суше и на какое расстояние», — написала Натали Вулховер в статье «10 лучших изобретений, изменивших мир». «Колесные тележки облегчили сельское хозяйство и торговлю, позволив перевозить товары на рынки и с рынков, а также облегчили бремя людей, путешествующих на большие расстояния».

Колесо значительно снижает трение, возникающее при перемещении объекта по поверхности.«Если вы поместите картотечный шкаф на небольшую тележку с колесами, вы можете значительно уменьшить силу, которую необходимо приложить для перемещения шкафа с постоянной скоростью», — говорится в сообщении Университета Теннесси.

В своей книге «Древняя наука: предыстория — 500 г. н.э.» (Гарет Стивенс, 2010) Чарли Сэмюэлс пишет: «В некоторых частях мира тяжелые объекты, такие как камни и лодки, перемещались с помощью бревенчатых катков. , катки были сняты сзади и заменены спереди ». Это был первый шаг в развитии колеса.

Но самым большим нововведением стала установка колеса на ось. Колесо могло быть прикреплено к оси, которая поддерживалась подшипником, или его можно было заставить свободно вращаться вокруг оси. Это привело к развитию повозок, повозок и колесниц. По словам Самуэльса, археологи используют колесо, вращающееся на оси, как показатель относительно развитой цивилизации. Самые ранние свидетельства существования колес на осях относятся к 3200 г. до н. Э. Шумеры. Китайцы самостоятельно изобрели колесо в 2800 г.C. [Связано: почему так долго изобреталось колесо]

Множители силы

Согласно Science Quest от Wiley, помимо уменьшения трения, колесо и ось могут также служить в качестве множителя силы. Если колесо прикреплено к оси и для поворота колеса используется сила, вращающая сила или крутящий момент на оси намного больше, чем сила, приложенная к ободу колеса. В качестве альтернативы, к оси можно прикрепить длинную ручку для достижения аналогичного эффекта.

Все остальные пять машин помогают людям увеличивать и / или перенаправлять силу, приложенную к объекту.В своей книге «Перемещение больших вещей» (Пора пора, 2009) Джанет Л. Колоднер и ее соавторы пишут: «Машины обеспечивают механическое преимущество, помогая перемещать объекты. Механическое преимущество — это компромисс между силой и расстоянием. » В следующем обсуждении простых машин, которые увеличивают силу, прилагаемую к их входу, мы пренебрегаем силой трения, потому что в большинстве этих случаев сила трения очень мала по сравнению с задействованными входными и выходными силами.

Когда сила действует на расстоянии, она производит работу.Математически это выражается как W = F × D. Например, чтобы поднять объект, мы должны выполнить работу, чтобы преодолеть силу тяжести и переместить объект вверх. Чтобы поднять объект, который вдвое тяжелее, требуется в два раза больше работы, чтобы поднять его на такое же расстояние. Также требуется вдвое больше работы, чтобы поднять один и тот же объект вдвое дальше. Как показывает математика, главное преимущество машин состоит в том, что они позволяют нам выполнять такой же объем работы, прикладывая меньшее количество силы на большее расстояние.

Качели — это пример рычага. Это длинная балка, балансирующая на оси. (Изображение предоставлено: BestPhotoStudio Shutterstock)

Рычаг

«Дайте мне рычаг и место, чтобы встать, и я переверну мир». Это хвастливое заявление приписывается греческому философу, математику и изобретателю III века Архимеду. Хотя это может быть немного преувеличением, это действительно выражает силу рычагов, которые, по крайней мере, образно, движут миром.

Гений Архимеда заключался в том, чтобы понять, что для того, чтобы выполнить ту же работу, можно найти компромисс между силой и расстоянием, используя рычаг.Его Закон рычага гласит: «Величины находятся в равновесии на расстояниях, обратно пропорциональных их весам», согласно «Архимеду в 21 веке», виртуальной книге Криса Рорреса из Нью-Йоркского университета.

Рычаг состоит из длинной балки и оси шарнира. Механическое преимущество рычага зависит от соотношения длин балки по обе стороны от точки опоры.

Например, мы хотим поднять 100 фунтов. (45 кг) вес 2 фута (61 см) от земли.Мы можем потянуть 100 фунтов. силы на вес в направлении вверх на расстояние 2 фута, и мы проделали 200 фунт-футов (271 Ньютон-метр) работы. Однако, если бы мы использовали рычаг длиной 30 футов (9 м) с одним концом под грузом и точкой опоры длиной 1 фут (30,5 см), расположенной под балкой на расстоянии 10 футов (3 м) от груза, у нас было бы только надавить на другой конец с 50 фунтами. (23 кг) силы для подъема груза. Однако нам придется нажать на конец рычага на 4 фута (1,2 м), чтобы поднять груз на 2 фута.Мы пошли на компромисс, в котором мы удвоили расстояние, на которое нам нужно было переместить рычаг, но мы уменьшили необходимое усилие вдвое, чтобы проделать тот же объем работы.

Наклонная плоскость

Наклонная плоскость — это просто плоская поверхность, поднятая под углом, как пандус. По словам Боба Уильямса, профессора кафедры машиностроения Инженерно-технологического колледжа Русса Университета Огайо, наклонная плоскость — это способ поднять груз, который будет слишком тяжелым, чтобы поднять его прямо вверх.Угол (крутизна наклонной плоскости) определяет, какое усилие необходимо для подъема груза. Чем круче пандус, тем больше усилий требуется. Это означает, что если мы поднимем наши 100 фунтов. вес 2 фута, скатывая его по 4-футовой рампе, мы уменьшаем необходимое усилие вдвое и вдвое увеличиваем расстояние, на которое он должен перемещаться. Если бы мы использовали рампу высотой 8 футов (2,4 м), мы могли бы уменьшить необходимую силу до 25 фунтов. (11,3 кг).

Шкив

Если мы хотим поднять те же 100 фунтов. груз с веревкой, мы могли прикрепить шкив к балке над грузом.Это позволит нам тянуть вниз, а не вверх по веревке, но для этого все равно требуется 100 фунтов. силы. Однако, если бы мы использовали два шкива — один прикреплен к верхней балке, а другой — к грузу, — и мы должны были бы прикрепить один конец троса к балке, пропустить его через шкив на балке, а затем через шкив на балке, нам нужно будет только натянуть веревку с 50 фунтами. силы, чтобы поднять вес, хотя нам пришлось бы тянуть веревку на 4 фута, чтобы поднять вес на 2 фута.Опять же, мы обменяли увеличенное расстояние на уменьшение силы.

Если мы хотим использовать еще меньшую силу на еще большем расстоянии, мы можем использовать блок и захват. Согласно материалам курса Университета Южной Каролины, «блок и захват — это комбинация шкивов, которая снижает количество силы, необходимой для подъема чего-либо. Компромисс заключается в том, что для блока и захвата требуется более длинная веревка. переместить что-нибудь на такое же расстояние «.

Какими бы простыми ни были шкивы, они все еще находят применение в самых современных новых машинах.Например, Hangprinter, 3D-принтер, который может создавать объекты размером с мебель, использует систему проводов и управляемых компьютером шкивов, прикрепленных к стенам, полу и потолку.

Винт

«Винт — это, по сути, длинная наклонная плоскость, обернутая вокруг вала, поэтому к его механическому преимуществу можно подойти так же, как и к наклону», — говорится на сайте HyperPhysics, созданном Государственным университетом Джорджии. Многие устройства используют винты для приложения силы, намного превышающей силу, используемую для поворота винта.К этим устройствам относятся настольные тиски и гайки на автомобильных колесах. Они получают механическое преимущество не только за счет самого винта, но также, во многих случаях, за счет использования длинной ручки, используемой для поворота винта.

Клин

По данным Горно-технологического института Нью-Мексико, «клинья перемещают наклонные плоскости, которые двигаются под нагрузкой для подъема или в груз для разделения или разделения». Более длинный и тонкий клин дает больше механических преимуществ, чем более короткий и широкий клин, но клин делает кое-что еще: основная функция клина — изменять направление входной силы.Например, если мы хотим расколоть бревно, мы можем с большой силой вогнать клин в конец бревна с помощью кувалды, и клин перенаправит эту силу наружу, в результате чего древесина расколется. Другой пример — дверной упор, в котором сила, используемая для толкания его под край двери, передается вниз, в результате чего возникает сила трения, которая сопротивляется скольжению по полу.

Дополнительный отчет Чарльза К. Чоя, участника Live Science

Дополнительные ресурсы

  • John H.Линхард, почетный профессор машиностроения и истории Хьюстонского университета, «еще раз взглянет на изобретение колеса».
  • Центр науки и промышленности в Колумбусе, штат Огайо, предлагает интерактивное объяснение простых машин.
  • HyperPhysics, веб-сайт, созданный Государственным университетом Джорджии, проиллюстрировал объяснения шести простых машин.

Найдите забавные занятия с использованием простых машин в Музее науки и промышленности в Чикаго.

6 видов простых машин

Работа выполняется путем приложения силы на расстоянии. Эти шесть простых машин создают большую выходную силу, чем входную; соотношение этих сил составляет механического преимущества машины. Все шесть перечисленных здесь простых машин использовались в течение тысяч лет, а физика, лежащая в основе некоторых из них, была количественно определена греческим философом Архимедом (ок. 287–212 до н. Э.). В сочетании эти машины могут использоваться вместе для создания еще большего механического преимущества, как в случае с велосипедом.

Рычаг

Рычаг — это простой механизм, состоящий из жесткого объекта (часто какого-либо стержня) и точки опоры (или оси). Приложение силы к одному концу жесткого объекта заставляет его вращаться вокруг точки опоры, вызывая увеличение силы в другой точке вдоль жесткого объекта. Существует три класса рычагов, в зависимости от того, где находятся входная сила, выходная сила и точка опоры по отношению друг к другу. Самый ранний рычаг использовался в качестве весов к 5000 году до нашей эры; Архимеду приписывают высказывание: «Дайте мне место, чтобы встать, и я сдвину землю».«Бейсбольные биты, качели, тачки и ломы — это все типы рычагов.

Колесо и ось

Колесо — это круглое устройство, которое прикреплено к жесткому стержню в его центре. Сила, приложенная к колесу, заставляет ось вращаться, что может использоваться для увеличения силы (например, путем наматывания веревки вокруг оси). В качестве альтернативы сила, прилагаемая для вращения оси, преобразуется во вращение колеса. Его можно рассматривать как тип рычага, который вращается вокруг центральной точки опоры.Самая ранняя известная комбинация колеса и оси была игрушечной моделью четырехколесной повозки, сделанной в Месопотамии около 3500 г. до н. Э. Колеса обозрения, шины и скалки — это примеры колес и осей.

Плоскость наклонная

Наклонная плоскость — это плоская поверхность, установленная под углом к ​​другой поверхности. Это приводит к тому, что вы выполняете такой же объем работы за счет приложения силы на большем расстоянии. Самая основная наклонная плоскость — это пандус; для подъема по пандусу на более высокую отметку требуется меньше усилий, чем для подъема на эту высоту по вертикали.Никто не изобрел наклонную плоскость, поскольку она встречается в природе, но люди использовали пандусы для строительства больших зданий (монументальная архитектура) еще в 10–8500 годах до нашей эры. В «Плоском равновесии» Архимеда описываются центры тяжести различных геометрических плоских фигур.

клин

Клин часто считают двойной наклонной плоскостью (обе стороны наклонены), которая перемещается, чтобы оказывать силу по длине сторон. Сила перпендикулярна наклонным поверхностям, поэтому она раздвигает два объекта (или части одного объекта).Топоры, ножи и стамески — все это клинья. Обычный «дверной клин» использует силу на поверхностях для обеспечения трения, а не для разделения предметов, но по сути это все равно клин. Клин — самая старая простая машина, созданная нашими предками Homo erectus , по крайней мере, 1,2 миллиона лет назад для изготовления каменных орудий.

Винт

Винт — это вал, имеющий на своей поверхности наклонный паз. При вращении винта (приложении крутящего момента) сила прикладывается перпендикулярно канавке, тем самым преобразуя вращательную силу в линейную.Он часто используется для скрепления объектов (как крепежный винт и болт). Вавилоняне в Месопотамии разработали винт в 7 веке до нашей эры, чтобы поднимать воду из низко расположенного тела в более высокое (орошать сад из реки). Эта машина позже будет известна как винт Архимеда.

Шкив

Шкив — это колесо с канавкой по краю, куда можно поместить трос или трос. Он использует принцип приложения силы на большом расстоянии, а также натяжение веревки или кабеля, чтобы уменьшить величину необходимой силы.Сложные системы шкивов могут использоваться для значительного уменьшения усилия, которое необходимо приложить изначально для перемещения объекта. Простые шкивы использовались вавилонянами в 7 веке до нашей эры; первый сложный (с несколькими колесами) был изобретен греками около 400 г. до н. э. Архимед усовершенствовал существующую технологию, сделав первый полностью реализованный блок-снаряд.

Что такое машина?

Слово «машина» («machina») на греческом языке впервые употребил древнегреческий поэт Гомер в 8 веке до н.э., который использовал его для обозначения политических манипуляций.Считается, что греческий драматург Эсхил (523–426 до н. Э.) Использовал это слово в отношении театральных машин, таких как « deus ex machina » или «бог из машины». Эта машина была краном, который выводил на сцену актеров, играющих богов.

Источники и дополнительная информация

  • Баутиста Пас, Эмилио и др. «Краткая иллюстрированная история машин и механизмов». Дордрехт, Германия: Springer, 2010. Печать.
  • Чеккарелли, Марко.«Вклад Архимеда в механику и конструкцию механизмов». Теория механизмов и машин 72 (2014): 86–93. Распечатать.
  • Хондрос, Томас Г. «Архимед Жизни Работы и Машины». Теория механизмов и машин 45.11 (2010): 1766–75. Распечатать.
  • Писано, Рафаэле и Данило Капеччи. «Об архимедовых корнях в механике Торричелли». Гений Архимеда: 23 века влияния на математику, науку и технику.Ред. Пайпетис, Стефанс А. и Марко Чеккарелли. Материалы международной конференции, состоявшейся в Сиракузах, Италия, 8–10 июня 2010 г. Дордрехт, Германия: Springer, 2010. 17–28. Распечатать.
  • Уотерс, Шон и Джордж А. Аггидис. «Обзор более 2000 лет: возрождение винта Архимеда от насоса к турбине». Обзоры возобновляемых и устойчивых источников энергии 51 (2015): 497–505. Распечатать.

Что такое машина? Классификация машин. Типы машин.

Что такое машина?

Проектирование машин — важная часть инженерных приложений, но что такое машина? Машина — это устройство, которое состоит из неподвижных частей и движущихся частей, объединенных вместе для генерирования, преобразования или использования механической энергии. Все машины состоят из элементов или частей и узлов. Каждый элемент представляет собой отдельную часть машины и может быть спроектирован отдельно и в сборе. Каждый элемент, в свою очередь, может быть целостной деталью или состоять из нескольких небольших частей, соединенных друг с другом с помощью клепки, сварки и т. Д.Несколько частей машины собираются вместе, образуя то, что мы называем законченной машиной.

Вот несколько примеров станков:

  1. Токарный станок: он использует механическую энергию для резки металлов. Другие типы станков также выполняют ту же задачу.

  2. Турбины: они производят механическую энергию.

  3. Компрессоры: они используют механическую энергию для сжатия воздуха.

  1. Двигатели: они потребляют топливо и производят механическую энергию.

  2. Холодильники и кондиционеры: они используют машиностроение для создания охлаждающего эффекта.

  3. Стиральные машины: они используют механическую энергию для стирки одежды.

Классификация машин

Учитывая различные области применения машин, они подразделяются на три основных типа:

  1. Машины, генерирующие механическую энергию : Машины, генерирующие механическую энергию, также называются первичными двигателями .Эти машины преобразуют некоторые формы энергии, такие как тепловая, гидравлическая, электрическая и т. Д., В механическую энергию или работу. Самый популярный пример этих машин — двигатель внутреннего сгорания, в котором химическая энергия топлива преобразуется в тепловую энергию, которая, в свою очередь, преобразуется в механическую работу в виде вращения колес транспортного средства. Некоторыми другими примерами машин этой группы являются газовые турбины, водяные турбины, паровые двигатели и т. Д. энергия и т. д.Некоторыми примерами этих машин являются электрический генератор, в котором вращение вала преобразуется в электрическую энергию, и гидравлический насос, в котором энергия вращения роторов преобразуется в гидравлическую энергию жидкости.

  2. Машины, использующие механическую энергию : Эти машины получают механическую энергию и используют ее для различных приложений. Некоторыми примерами этих машин являются токарный станок, который использует механическую энергию для резки металлов, и стиральную машину, которая использует вращение ротора для стирки одежды.

Ссылка

Книга: Проектирование машин доктором П. К. Шармой и Д. К. Аггарвалом

Этот пост является частью серии: Проектирование машин или механическое проектирование

Это серия статей по проектированию машин или механическому проектированию. Машиностроение и чертеж — очень важные предметы машиностроения. Ни один продукт не может быть произведен без его проектирования. Здесь были рассмотрены некоторые основные концепции конструкции машин или механической конструкции.

  1. Что такое инженерное проектирование?
  2. Что такое механическое проектирование или проектирование машин?
  3. Что такое машина?
  4. Что такое элементы машин?
  5. Факторы, которые следует учитывать при проектировании машины: Часть-1
  6. Факторы, которые следует учитывать при проектировании машины: Часть-2
  7. Процедура проектирования машины
  8. Навыки, которыми должен обладать хороший конструктор машин

Сложные машины: определение, типы и Примеры — видео и стенограмма урока

Шесть простых машин

Забавно то, что этот маленький степлер, который теперь кажется очень мощным инструментом, на самом деле представляет собой всего лишь комбинацию двух простых машин.Удивительно, но всего шесть простых машин используются для изготовления сложных машин.

1. Рычаг

У вас есть рычаг, который представляет собой планку, опирающуюся на кончик треугольной платформы. Платформа позволяет доске двигаться вверх и вниз, когда ее толкают с одной стороны. Платформу или точку опоры можно разместить в любом месте под доской. Чтобы упростить подъем тяжелых предметов, точка опоры перемещается ближе к объекту, пока вы нажимаете на другой конец. Хороший пример такого рычага — лом.Качели — еще один пример рычага, но в этом случае точка опоры находится посередине.

2. Наклонная плоскость

Наклонная плоскость подобна пандусу, по которому грузчики перекатывают вещи с земли в свои грузовики.

3. Колесо и ось

Вы знаете, что такое колесо. Почти все, что вращается и движется, использует колесо, например, ваш велосипед. Ось — это стержень, который проходит через колеса. Это помогает колесу и шестерням вращаться.

4. Клин

У вас также есть клин треугольной формы.Острый конец используется для разделения предметов. Топор, например, представляет собой клин с рукоятью.

5. Шкив

Шкив — это инструмент, облегчающий подъем предметов. Он использует веревку, которая вращается вокруг колеса. Вы тянете за одну сторону веревки, и шкив облегчает подъем груза, прикрепленного к другому концу веревки.

6. Винт

Наконец, у вас есть винт. Шурупы используются, чтобы скрутить все вместе. Ваш дом построен на шурупах, и если вы посмотрите на нижнюю или боковые стороны компьютера, вы увидите винты, которые удерживают крышку компьютера.

Вы не поверите, но все сложные машины создаются с использованием комбинации этих шести простых машин.

Типы сложных машин

Существует так много разных типов сложных машин. У вас есть сложные машины, которые помогут вам с офисными задачами, такие как степлер:

  • Степлер — сделанный из рычага и клина

И у вас есть сложные машины, которые помогут вам с вашим автомобилем:

  • Автомобильный домкрат — из клина и винта
  • Эвакуатор — из рычага и шкива

У вас также есть сложные машины, которые помогают при работе на дворе:

  • Колесная тележка — сделана из колеса и оси, рычага и наклонной плоскости
  • Садовая мотыга — клин и рычаг

У вас также есть сложные машины, которые помогут вам перемещаться из одного места в другое:

  • Велосипед — сделанный из винтов, рычагов, шкивов, колес и осей

Пример сложных машин

Теперь давайте посмотрим, как разбить сложную машину на части.Посмотрите на эту сложную машину.

Какие простые машины составляют эту сложную машину?

Вы видите шкив вверху, рычаг, образующий стрелу, а также колесные и осевые блоки, которые поворачивают кран и перемещают канаты, поднимающие предметы в воздух. И у вас есть винты, которые удерживают различные части вместе.

Несмотря на то, что она состоит из простых машин, эта сложная машина может выполнять довольно большие работы. Это то, что делает сложные машины такими полезными и важными в реальном мире и в повседневной жизни.Сложные машины делают больше, чем простые машины, из которых они состоят, могут делать сами.

Итоги урока

Давайте рассмотрим.

Сложная машина — это машина, состоящая из двух или более простых машин, которые облегчают вашу работу. Есть шесть простых машин, из которых сделаны все сложные машины. В их число входят:

  • Рычаг
  • Плоскость наклонная
  • Колесо и ось
  • Клин
  • Шкив
  • Винт

Комбинируя эти шесть простых машин, вы можете создавать всевозможные сложные машины, которые помогут вам выполнять вашу работу, такие как краны, велосипеды, степлеры, ножницы и тачки.

Simple Machines: Facts (Science Trek: Idaho Public Television)

См. 10 самых популярных вопросов

Давным-давно человеку нужно было переместить что-то тяжелое. Он или она взял длинную палку и воткнул ее под край тяжелого предмета, а затем надавил на другой конец палки. И была изобретена первая простая машина. Простые машины — это просто так. Самая простая форма использования чего-то одного, чтобы достичь чего-то быстрее или лучше.Инструмент. Они были созданы первыми, и мы используем их до сих пор.

Есть 6 основных простых машин; рычаг, колесо и ось, наклонная плоскость, клин, шкив и винт. Некоторые из этих простых машин связаны друг с другом. Но у каждого из них есть своя цель в мире работы.

А что такое работа? Работа — это количество энергии, необходимое для перемещения объекта. Чем дальше вы его переместите, тем больше потребуется работы. Работа измеряется в Ньютонах.Подробнее об этом позже. Сначала давайте подробно рассмотрим каждую из 6 простых машин.

Рычаг

Рычаг — это длинный инструмент, такой как шест или стержень, который помещается под какой-либо предмет, чтобы поднять его. Рычаг более эффективен в сочетании с точкой опоры. Точка опоры — это еще один объект, возможно, камень, которым крепится длинный инструмент. Это дает длинному шесту что-то, к чему можно прижаться. Расположение точки опоры помогает определить, насколько хорошо рычаг будет выполнять работу. Чем ближе точка опоры к поднимаемому объекту, тем легче человек может поднять этот объект.Чем длиннее рычаг, тем выше можно поднять объект. Посчитайте — все дело в расстоянии между объектом, точкой опоры и рычагом.

Рычаги вокруг нас. Примеры рычагов: дверные ручки, когти молотка (для удаления гвоздей), ломы, выключатели света, открывалки для бутылок и петли.

Колесо и ось

Колесо всегда считалось главным изобретением в истории человечества. Но это действительно не сработало бы так хорошо, как если бы не ось.Ось — это стержень или шест, расположенный в центре колеса, который позволяет колесу вращаться вокруг него. Затем колесо вращается по сбалансированному кругу, чтобы его можно было использовать в качестве транспорта на велосипеде или для поворота стрелок часов. Шестерни представляют собой форму колеса и оси.

Колеса находятся там, где все вращается по кругу, например, электрический вентилятор, мотор, вращающаяся дверь, карусель и любое колесо — на машине, на вашем скейтборде или на велосипеде.

Наклонная плоскость

Наклонная плоскость — это просто пандус.Один конец выше противоположного. Это позволяет вещам переходить от низкого уровня к более высокому. Или наоборот. Для перемещения объекта вверх по пандусу требуется такой же объем работы, но с меньшими усилиями, чем для перемещения его по вертикали. Гравитация облегчает перемещение объекта по наклонной поверхности, чем по ней.

Пандусы используются в скейт-парках, пандусах для инвалидных колясок, а также для загрузки и выгрузки тяжелого оборудования из кузова грузовиков. Но модифицированная версия пандуса также встречается на лестницах, эскалаторах, лестницах, пешеходных дорожках и даже в желобах, используемых для сброса почты в почтовый ящик.

Клин

Некоторые люди могут рассматривать клин как просто наклонную плоскость, хотя на самом деле это две наклонные плоскости. Однако использование клина на самом деле отличается по своей природе. Клин используется для разделения объекта. Это нужно, чтобы что-то разрезать, порвать или сломать пополам. Клин также можно использовать, чтобы держать вещи вместе или предохранять их от движения.

Некоторыми примерами клиньев, которые используются для разделения, могут быть лопата, нож, топор, кирка, пила, игла, ножницы или ледоруб.Но клинья также могут удерживать предметы вместе, как в случае скобы, нажимной кнопки, кнопки, гвоздя, дверного упора или прокладки.

Шкив

Шкив на самом деле представляет собой версию колеса и оси, которая соединена с тросом, цепью или другим шнуром, что позволяет перемещать что-либо вверх и вниз или назад и вперед. Шкив можно комбинировать с другими шкивами, чтобы уменьшить объем работы, необходимой для подъема огромных грузов или их опускания. Это также может сделать перемещение чего-либо, например флага по шесту, удобным для выполнения с земли.Он изменяет направление силы, необходимой для выполнения работы. Я тяну веревку вниз, но флаг поднимается.

Шкивы используются в оконных жалюзи и драпировках, чтобы перемещать их вверх и вниз или назад и вперед. Шкивы также используются на судах для подъема и опускания парусов, в промышленности для подъема и опускания тяжелых грузов или на подъемных кранах для перемещения строительного оборудования. Лифты также используют шкивы для перемещения автомобиля вверх и вниз с этажа на этаж.

Винт

Винт действительно скрученная наклонная плоскость.Он позволяет перемещаться из более низкого положения в более высокое, но в то же время перемещает его по кругу. Благодаря этому он занимает меньше места по горизонтали. В некоторых случаях винт также может удерживать предметы вместе.

Некоторые примеры использования винта: крышка банки, дрель, болт, лампочка, краны, крышки для бутылок и шариковые ручки. Круглые лестницы также представляют собой винтовые ступени.

Винт также используется в устройстве, известном как винтовой насос.Огромный винт опускается в воду, и, поворачивая винт, вода перемещается вверх по скрученному валу и поднимается туда, где это необходимо. Винтовые насосы часто используются в сельском хозяйстве, например на фермах, и для орошения.

Измерительные работы

Работа — это количество энергии, необходимое для перемещения объекта. Человек может толкаться о кирпичную стену, пока не вспотеет. Но если они не сдвинули стену — даже немного — они не работали. Но в то же время, если вы сдвинете компьютерную мышь хотя бы на часть дюйма, вы сделали работу.Работа в научном смысле. Не пытайтесь убедить своих родителей или учителей, что вы проделали много работы, играя в видеоигры.

Работу можно измерить. Он измеряется расстоянием, на которое сила перемещает объект. Сэр Исаак Ньютон был очень известным ученым, прекрасно понимавшим взаимосвязь между силой и движением. По этой причине измерение известно как Ньютон. Он обозначается с большой буквы N. Термин Джоуль часто используется для измерения работы в ньютонах на метр.Если для перемещения любого объекта на 1 метр требуется 1 Ньютон, то это эквивалентно джоуля.

Существуют специальные инструменты для измерения силы, необходимой для перемещения объекта. Они известны как измерители силы. Они используют пружину и крюк, чтобы определить, какое усилие требуется, чтобы сдвинуть объект вверх по наклонной плоскости. Действительно очень просто в использовании.

Составные машины

Простые машины могут быть объединены в составные машины. Многие из наших повседневных инструментов и предметов, которые мы используем, на самом деле представляют собой сложные машины.Ножницы — хороший тому пример. По краю лезвия клинья. Но лезвия объединены с рычагом, чтобы два лезвия соединялись для резки.

Газонокосилка сочетает в себе клинья (ножи) с колесом и осью, которая вращает ножи по кругу. Но это еще не все. Двигатель, вероятно, работает в сочетании с несколькими простыми механизмами, а ручка, которую вы используете, чтобы толкать газонокосилку по двору, представляет собой форму рычага. Так что даже что-то сложное можно разбить на простейшие машины.

Оглянитесь вокруг — можете ли вы понять, из каких простых машин изготавливаются консервный нож, ручная точилка для карандашей, дозатор льда в холодильнике или степлер? Но будьте осторожны. В наши дни функционирование многих вещей зависит от электроники и световых волн, а не из простых машин. Но даже тогда вы можете быть удивлены. Поворотный стол в вашей микроволновой печи — это колесо и ось. Крышка ноутбука соединяется с площадкой с помощью шарнира или рычага.

Простые машины могут быть простыми, но они просто повсюду.

Несколько слов о Rube

Рубе Голдберг был известным художником-карикатуристом, жившим между 1883 и 1970 годами. Его жизнь была потрачена на создание произведений искусства и скульптур, но самая известная его работа была связана с его «изобретениями». Эти изобретения представляли собой серию простых машин, собранных сложным образом для выполнения чего-то очень простого, но для этого потребовалось много шагов. Конкурсы проводятся уже много лет со времен г.Гольдберг первым создал свои уникальные идеи. На конкурсах люди пытаются придумать новые способы включения света или запустить тостер, используя эти комбинации простых машин, чтобы поразить судей и аудиторию их уникальным способом выполнения этих простых задач.

Машины Руба Голдберга интересно смотреть и строить. Посетите этот сайт, чтобы повеселиться — посмотрите, сможете ли вы определить каждую из простых машин, работающих вместе, в этой анимации гаджета Руба Голдберга, разработанного, чтобы вытащить этого парня из постели по утрам.Кликните сюда.

Для получения дополнительной информации о жизни Рубе Голдберга и его творчестве щелкните здесь.

Инженерное дело: простые машины — Урок

. (2 Рейтинги)

Быстрый просмотр

Уровень оценки: 4 (3-5)

Требуемое время: 30 минут

Зависимость урока: Нет

Тематические области: Геометрия, Физические науки, Решение проблем, Рассуждения и доказательства, Наука и технологии

Ожидаемые характеристики NGSS:


Резюме

Простые машины — это устройства с небольшим количеством движущихся частей или без них, которые облегчают работу.Студенты знакомятся с шестью типами простых машин — клином, колесом и осью, рычагом, наклонной плоскостью, винтом и шкивом — в контексте построения пирамиды, получая общее представление об инструментах, которые использовались с тех пор. древние времена и используются до сих пор. В двух практических занятиях учащиеся начинают собственное проектирование пирамиды, выполняя расчеты материалов, а также оценивая и выбирая строительную площадку. Шесть простых машин более подробно рассматриваются в последующих уроках этого раздела. Эта инженерная программа соответствует научным стандартам нового поколения (NGSS).

Инженерное соединение

Почему инженеры заботятся о простых машинах? Как такие устройства помогают инженерам улучшать общество? Простые машины важны и распространены в нашем мире сегодня в виде повседневных устройств (ломы, тачки, съезды на шоссе и т. Д.), Которые люди, особенно инженеры, используют ежедневно. Те же физические принципы и механические преимущества простых машин, которые использовались древними инженерами для строительства пирамид, используются сегодняшними инженерами для строительства современных сооружений, таких как дома, мосты и небоскребы.Простые машины предоставляют инженерам дополнительные инструменты для решения повседневных задач.

Цели обучения

После этого урока учащиеся должны уметь:

  • Разберитесь, что такое простая машина и как она может помочь инженеру что-то построить.
  • Определите шесть типов простых машин.
  • Поймите, как те же физические принципы, которые сегодня используются инженерами при строительстве небоскребов, использовались инженерами в древние времена для строительства пирамид.
  • Сгенерируйте и сравните несколько возможных решений для создания простой рычажной машины в зависимости от того, насколько хорошо каждое из них соответствует ограничениям задачи.

Образовательные стандарты

Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными дисциплинами K-12, образовательные стандарты в области технологий, инженерии или математики (STEM).

Все 100000+ стандартов K-12 STEM, охватываемых TeachEngineering , собираются, обслуживаются и упаковываются сетью стандартов достижений (ASN) , проект D2L (www.achievementstandards.org).

В ASN стандарты иерархически структурированы: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .

NGSS: научные стандарты нового поколения — наука
Ожидаемые характеристики NGSS

3-ПС2-2.Выполняйте наблюдения и / или измерения движения объекта, чтобы предоставить доказательства того, что шаблон может быть использован для прогнозирования будущего движения. (3-й степени)

Вы согласны с таким раскладом? Спасибо за ваш отзыв!

Нажмите, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям от результатов.
Этот урок посвящен следующим аспектам трехмерного обучения NGSS:
Наука и инженерная практика Основные дисциплинарные идеи Общие концепции
Проводите наблюдения и / или измерения для получения данных, которые служат в качестве основы для доказательства для объяснения явления или проверки проектного решения.

Соглашение о выравнивании: Спасибо за отзыв!

Научные открытия основаны на распознавании закономерностей.

Соглашение о выравнивании: Спасибо за отзыв!

Можно наблюдать и измерять закономерности движения объекта в различных ситуациях; когда это прошлое движение демонстрирует регулярный образец, будущее движение может быть предсказано по нему. (Граница: технические термины, такие как величина, скорость, импульс и векторная величина, не вводятся на этом уровне, но разрабатывается концепция, согласно которой для описания некоторых величин требуется как размер, так и направление.)

Соглашение о выравнивании: Спасибо за отзыв!

Шаблоны изменений можно использовать для прогнозирования.

Соглашение о выравнивании: Спасибо за отзыв!

Международная ассоциация преподавателей технологий и инженерии — Технология Предложите выравнивание, не указанное выше

Какое альтернативное выравнивание вы предлагаете для этого контента?

Рабочие листы и приложения

Посетите [www.teachengineering.org/lessons/view/cub_simple_lesson01], чтобы распечатать или загрузить.

Больше подобной учебной программы

Рычаги подъема

Студенты знакомятся с тремя из шести простых механизмов, используемых многими инженерами: рычагом, шкивом и колесно-осевым механизмом. Как правило, инженеры используют рычаг для увеличения силы, приложенной к объекту, шкив для подъема тяжелых грузов по вертикальному пути и колесо с осью для увеличения крутящего момента…

Сдвиньте вправо, используя наклонную плоскость

Учащиеся изучают построение пирамиды, узнавая о простой машине, называемой наклонной плоскостью. Они также узнают о другой простой машине, шурупе, и о том, как она используется в качестве подъемного или крепежного устройства.

Здание пирамиды: как использовать клин

Студенты узнают, как простые машины, в том числе клинья, использовались при строительстве древних пирамид и современных небоскребов.На практических занятиях учащиеся тестируют различные клинья на различных материалах (воске, мыле, глине, пене).

Всплеск, Поп, Физз: Машины Руба Голдберга

Освежено пониманием шести простых машин; Винт, клин, шкив, наклонная плоскость, колесо и ось, а также рычаг, группы студентов получают материалы и выделенное количество времени, чтобы выступать в качестве инженеров-механиков при проектировании и создании машин, способных выполнять указанные задачи.

Введение / Мотивация

Как египтяне построили Великие пирамиды тысячи лет назад (~ 2500 г. до н. Э.)? Можете ли вы построить пирамиду из каменных блоков весом 9000 кг (~ 10 тонн или 20 000 фунтов) голыми руками? Это все равно, что пытаться голыми руками сдвинуть большого слона! Сколько людей потребуется, чтобы переместить такой большой блок? Сегодня все еще сложно построить пирамиду даже с использованием современных инструментов, таких как отбойные молотки, краны, грузовики и бульдозеры.Но как египетские рабочие могли вырезать, формировать, транспортировать и складывать огромные камни без этих современных инструментов? Что ж, одним из ключей к выполнению этой удивительной и сложной задачи было использование простых машин.

Простые машины — это устройства без движущихся частей или с очень небольшим количеством движущихся частей, которые облегчают работу. Многие из сегодняшних сложных инструментов на самом деле представляют собой более сложные формы шести простых машин. Используя простые машины, обычные люди могут раскалывать огромные камни, поднимать большие камни и перемещать блоки на большие расстояния.

Однако для построения пирамид требовалось больше, чем просто машины. Также потребовалось грандиозное планирование и отличный дизайн . Планирование, проектирование, работа в команде и использование инструментов для создания чего-либо или выполнения работы — вот что такое Engineering . Инженеры используют свои знания, творческий потенциал и навыки решения проблем, чтобы совершать удивительные подвиги для решения реальных задач. Люди призывают инженеров использовать свое понимание того, как работают вещи, для выполнения кажущейся невозможной работы и облегчения повседневной деятельности.Удивительно, сколько раз инженеров и обращаются к простым машинам для решения этих задач.

Как только мы поймем простые машины, вы узнаете их во многих обычных делах и повседневных предметах. (Раздайте справочный лист «Простые машины».) Это шесть простых машин: клин , колесо и ось, рычаг, наклонная плоскость, винт и шкив . Теперь, когда вы видите картинки, узнаёте ли вы некоторые из этих простых машин? Можете ли вы увидеть какие-нибудь из этих простых машин в классе? Как они работают? Что ж, важным термином в лексике при изучении простых машин является феномен «» механического преимущества .Механическое преимущество простых машин означает, что мы можем использовать меньшее усилие для перемещения объекта, но мы должны перемещать его на большее расстояние. Хороший пример — толкание тяжелого предмета по пандусу. Может быть проще подтолкнуть объект вверх по пандусу, чем просто поднять его на нужную высоту, но это займет большее расстояние. Пандус — это пример простой машины, называемой наклонной плоскостью . Мы собираемся узнать намного больше о каждой из этих шести простых машин, которые представляют собой простое решение, помогающее инженерам и всем людям выполнять тяжелую работу.

Иногда бывает трудно распознать простые машины в нашей жизни, потому что они выглядят иначе, чем образцы, которые мы видим в школе. Чтобы упростить изучение простых машин, давайте представим, что мы живем в Древнем Египте и что лидер страны нанял нас в качестве инженеров, чтобы построить пирамиду. Студенты могут выступать в роли инженеров в веселых и практических занятиях: Stack It Up! и Выбор места пирамиды для проектирования и планирования строительства новой пирамиды. Сегодняшняя доступность электричества и технологически продвинутых машин затрудняет понимание того, что делает эта простая машина.Но в контексте Древнего Египта простые машины, которые мы будем изучать, являются гораздо более простыми инструментами того времени. Разобравшись в понимании простых машин, мы перенесем наш контекст на строительство небоскреба в наши дни, чтобы мы могли сравнить и сопоставить, как простые машины использовались на протяжении веков и используются до сих пор.

Предпосылки и концепции урока для учителей

Используйте прилагаемую презентацию PowerPoint «Введение в простые машины» и справочный лист «Простые машины» в качестве полезных инструментов в классе.(Покажите презентацию PowerPoint или распечатайте слайды для использования с диапроектором. Презентация анимирована, чтобы продвигать стиль, основанный на запросах; каждый щелчок раскрывает новую точку зрения о каждой машине; попросите учащихся предложить характеристики и примеры, прежде чем вы их покажете .)

Простые машины повсюду; мы используем их каждый день для выполнения простых задач. Простые машины также использовались с первых дней существования человечества. Хотя простые машины могут принимать разные формы, они бывают шести основных типов:

  • Wedge : Устройство, которое разделяет вещи.
  • Колесо и ось : Используется для уменьшения трения.
  • Рычаг : перемещается вокруг точки поворота для увеличения или уменьшения механического преимущества.
  • Наклонная плоскость : поднимает предметы, перемещаясь вверх по склону.
  • Винт : устройство, которое может поднимать или удерживать предметы.
  • Шкив : изменяет направление силы.

Простые машины

Мы используем простые машины, потому что они облегчают работу.Научное определение работы — это величина силы , приложенная к объекту, умноженная на расстояние, на которое объект перемещается. Таким образом, работа состоит из силы и расстояния. Для завершения каждого задания требуется определенный объем работы, и это число не меняется. Таким образом, умножение силы на расстояние всегда равняется одному и тому же объему работы. Это означает, что если вы перемещаете что-то на меньшее расстояние, вам нужно приложить большую силу. С другой стороны, если вы хотите приложить меньшее усилие, вам нужно переместить его на большее расстояние.Это компромисс между силой и расстоянием, или механическое преимущество , общее для всех простых машин. Благодаря механическому преимуществу, чем дольше длится работа, тем меньше усилий вам нужно использовать на протяжении всей работы. Большую часть времени мы чувствуем, что задача трудная, потому что она требует от нас больших усилий. Следовательно, компромисс между расстоянием и силой может значительно облегчить выполнение нашей задачи.

клин

Клин — это простая машина, которая раздвигает предметы или вещества, прикладывая силу к большой площади поверхности на клине, при этом сила увеличивается до меньшей площади на клине для выполнения фактической работы.Гвоздь — это обычный клин с широкой зоной шляпки гвоздя, на которую прикладывается сила, и небольшой точечной зоной, где прикладывается сосредоточенная сила. Сила увеличивается в острие, позволяя гвоздю пробить дерево. По мере того, как гвоздь погружается в древесину, форма клина на острие гвоздя продвигается вперед и раздвигает древесину.

Рис. 1. Топор является примером клина. Авторское право

Copyright © Martin Cathrae, Flickr https://www.flickr.com/photos/suckamc/3743184350

К повседневным образцам клиньев относятся топор (см. Рисунок 1), гвоздь, упор для двери, долото, пила, отбойный молоток, застежка-молния, бульдозер, снегоочиститель, конный плуг, застежка-молния, крыло самолета, нож, вилка и нос лодки или корабля.

Колесо и ось

Колесо и ось — это простая машина, которая снижает трение, возникающее при перемещении объекта, что упрощает транспортировку объекта. Когда объект толкают, необходимо преодолеть силу трения, чтобы он начал двигаться. Когда объект движется, сила трения противодействует силе, действующей на объект. Колесо и ось упрощают это, уменьшая трение, связанное с перемещением объекта. Колесо вращается вокруг оси (по сути стержня, который проходит через колесо, позволяя колесу вращаться), катясь по поверхности и минимизируя трение.Представьте, что вы пытаетесь столкнуть каменный блок весом 9000 кг (~ 10 тонн). Не было бы проще катить его, используя бревна, подложенные под камень?

Повседневные примеры колеса и оси включают автомобиль, велосипед, офисное кресло, тачку, тележку для покупок, ручную тележку и роликовые коньки.

Рычаг

Рычажная простая машина состоит из груза, точки опоры и усилия (или силы). Груз — это объект, который перемещается или поднимается. Точка опоры — это точка поворота, а усилие — это сила, необходимая для подъема или перемещения груза.При приложении силы к одному концу рычага (приложенная сила) создается сила на другом конце рычага. Приложенная сила либо увеличивается, либо уменьшается в зависимости от расстояния от точки опоры (точки или опоры, на которой поворачивается рычаг) до нагрузки и от точки опоры до усилия.

Рисунок 2: Лом является примером рычага. Авторское право

Copyright © 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. Все права защищены. С примечаниями программы ITL, Университет Колорадо в Боулдере, 2005 г.

Примеры рычагов на каждый день включают качели или качели, стрелу крана, лом, молоток (с помощью когтя), удочку и открывалку для бутылок. Подумайте, как вы используете лом (см. Рисунок 2). При нажатии на длинный конец лома сила создается на конце нагрузки на меньшем расстоянии, еще раз демонстрируя компромисс между силой и расстоянием.

Плоскость наклонная

Наклонные плоскости облегчают подъем чего-либо. Представьте себе пандус.Инженеры используют пандусы, чтобы легко перемещать объекты на большую высоту. Есть два способа поднять объект: подняв его прямо вверх или подтолкнув вверх по диагонали. Поднимая объект прямо вверх, он перемещается на кратчайшее расстояние, но вы должны приложить большую силу. С другой стороны, использование наклонной плоскости требует меньшего усилия, но вы должны приложить его на большее расстояние.

Повседневные примеры наклонных плоскостей включают пандусы для доступа к шоссе, пандусы для тротуаров, лестницы, наклонные конвейерные ленты и обратные дороги или тропы.

Винт

Рисунок 3: Автомобильный домкрат — это пример простой винтовой машины, которая позволяет одному человеку поднять борт автомобиля. Copyright

Copyright © https://en.wikipedia.org/wiki/Jack_(device) # / media / Файл: Jackscrew.jpg

Винт представляет собой наклонную плоскость, обернутую вокруг вала. Винты выполняют две основные функции: они удерживают предметы вместе или поднимают предметы. Винт хорош для скрепления предметов из-за резьбы вокруг вала.Нити захватывают окружающий материал, как зубы, обеспечивая надежную фиксацию; единственный способ вывернуть винт — раскрутить его. Автомобильный домкрат — это пример винта, который используется для подъема чего-либо (см. Рисунок 3).

Повседневные примеры винтов: винт, болт, зажим, крышка банки, автомобильный домкрат, вращающийся стул и винтовая лестница.

Шкив

Рис. 4. Шкив на корабле помогает людям тянуть тяжелую рыболовную сеть. Авторское право

Copyright © 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA.Все права защищены.

Шкив — это простой механизм, используемый для изменения направления силы. Подумайте о поднятии флага или тяжелом камне. Чтобы поднять камень на свое место на пирамиде, нужно приложить силу, которая поднимет его. Используя шкив, сделанный из рифленого колеса и веревки, можно потянуть вниз на веревке, используя силу тяжести, чтобы поднять камень вверх на . Еще более ценно то, что система из нескольких шкивов может использоваться вместе для уменьшения усилия, необходимого для подъема объекта.

Примеры повседневного использования шкивов: флагштоки, подъемники, паруса, рыболовные сети (см. Рис. 4), веревки для белья, краны, оконные шторы и жалюзи, а также снаряжение для скалолазания.

Составные машины

Составная машина — это устройство, объединяющее две или более простых машины. Например, тачка сочетает в себе использование колеса и оси с рычагом. Используя шесть основных простых машин, можно изготавливать всевозможные составные машины. У вас дома и в классе есть много простых и сложных машин.Некоторые примеры составных машин, которые вы можете найти: консервный нож (клиновой и рычажный), тренажеры / краны / эвакуаторы (рычаги и шкивы), лопата (рычаг и клин), автомобильный домкрат (рычаг и винт), колесная тачка ( колесо, ось и рычаг) и велосипед (колесо, ось и шкив).

Сопутствующие мероприятия

Закрытие урока

Сегодня мы обсудили шесть простых машин. Кто может назвать их для меня? (Ответ: клин, колесо и ось, рычаг, наклонная плоскость, винт и шкив.) Как простые машины облегчают работу? (Ответ: Механическое преимущество позволяет нам использовать меньшую силу для перемещения объекта, но мы должны перемещать его на большее расстояние.) Почему инженеры используют простые машины? (Возможные ответы: инженеры творчески используют свои знания в области естественных наук и математики, чтобы сделать нашу жизнь лучше, часто используя простые машины. Они изобретают инструменты, облегчающие работу. Они выполняют огромные задачи, которые невозможно было бы выполнить без механического преимущества простых машин. Они разрабатывать структуры и инструменты, чтобы лучше и эффективнее использовать наши экологические ресурсы.) Сегодня вечером дома подумайте о повседневных примерах шести простых машин. Посмотрите, сколько вы можете найти вокруг своего дома!

Заполните таблицу оценки KWL (см. Раздел «Оценка»). Оцените понимание учащимися урока, назначив Рабочий лист «Простые машины» в качестве теста на вынос. В качестве расширения используйте прикрепленный пакет Simple Machines Scavenger Hunt! Рабочий лист для проведения простого поиска мусора на машинах, в котором учащиеся находят примеры простых машин, используемых в классе и дома.

На других уроках этого раздела студенты изучают каждую простую машину более подробно и видят, как каждую из них можно использовать в качестве инструмента для построения пирамиды или современного здания.

Словарь / Определения

дизайн: (глагол) Планировать в систематической, часто графической форме. Создавать для определенной цели или эффекта. Спроектируйте здание. (существительное) Хорошо продуманный план.

Инженерия: применение научных и математических принципов в практических целях, таких как проектирование, производство и эксплуатация эффективных и экономичных конструкций, машин, процессов и систем.

сила: толкать или тянуть объект.

наклонная плоскость: простая машина, поднимающая объект на большую высоту. Обычно это прямая наклонная поверхность и отсутствие движущихся частей, таких как пандус, наклонная дорога или лестница.

Рычаг: Простая машина, которая увеличивает или уменьшает усилие для подъема чего-либо. Обычно штанга поворачивается на фиксированной точке (опоре), к которой прилагается сила для выполнения работы.

механическое преимущество: преимущество, полученное за счет использования простых машин, позволяющих выполнять работу с меньшими усилиями.Облегчение задачи (что означает меньшее усилие), но может потребоваться больше времени или места для работы (большее расстояние, веревка и т. Д.). Например, приложение меньшей силы на большем расстоянии для достижения того же эффекта, что и приложение большой силы на небольшом расстоянии. Отношение выходной силы, прилагаемой к машине, к приложенной к ней входной силе.

шкив: простой механизм, который изменяет направление силы, часто для подъема груза. Обычно состоит из рифленого колеса, в котором движется натянутый трос или цепь.

пирамида: массивная структура древнего Египта и Мезоамерики, использовавшаяся для склепа или гробницы. Типичная форма — квадратное или прямоугольное основание на земле со сторонами (гранями) в форме четырех треугольников, которые встречаются в точке наверху. Мезоамериканские храмы имеют ступенчатые стороны и плоскую вершину, увенчанную камерами.

Винт: простая машина, которая поднимает или скрепляет материалы. Часто цилиндрический стержень, нарезанный спиральной резьбой.

простая машина: машина с небольшим количеством движущихся частей или без них, которая используется для облегчения работы (дает механическое преимущество). Например, клин, колесо и ось, рычаг, наклонная плоскость, винт или шкив.

спираль: кривая, которая огибает фиксированную центральную точку (или ось) на постоянно увеличивающемся или уменьшающемся расстоянии от этой точки.

инструмент: устройство, используемое для работы.

клин: простая машина, разделяющая материалы.Используется для раскалывания, затяжки, фиксации или подъема. Он толстый на одном конце и сужается к тонкому краю на другом.

колесо и ось: простая машина, уменьшающая трение при движении за счет качения. Колесо — это диск, предназначенный для вращения вокруг оси, проходящей через центр колеса. Ось — это опорный цилиндр, на котором вращается колесо или колесная пара.

работа: сила, действующая на объект, умноженная на расстояние, на которое он перемещается. W = F x d (сила, умноженная на расстояние).

Оценка

Оценка перед уроком

Таблица «Знай / Хочу знать / Учиться» (KWL): Создайте классную диаграмму KWL, чтобы помочь организовать изучение новой темы. На большом листе бумаги или классной доске нарисуйте таблицу с заголовком «Строительство с помощью простых машин». Нарисуйте три столбца с названиями K, W и L, представляющие, что студенты знают о простых машинах, что они хотят, чтобы знал о простых машинах и что изучил о простых машинах.Заполняйте разделы K и W во время введения к уроку по мере появления фактов и вопросов. Заполните L-часть в конце урока.

Оценка после введения

Справочный лист: Раздайте прилагаемый справочный лист Simple Machines. Просмотрите информацию и ответьте на любые вопросы. Предложите студентам держать листы под рукой в ​​своих партах, папках или журналах.

Наблюдения: Покажите ученикам пример каждой простой машины и попросите их сделать наблюдения и обсудить любые закономерности, которые можно использовать для прогнозирования будущего движения.

Итоги урока Оценка

Заключительное обсуждение: Проведите неформальное обсуждение в классе, спросив учащихся, что они узнали из заданий. Спросите у студентов:

  • Кто может назвать разные типы простых машин? (Ответ: клин, колесо и ось, рычаг, наклонная плоскость, винт и шкив.)
  • Как простые машины облегчают работу? (Ответ: Механическое преимущество позволяет нам использовать меньшую силу для перемещения объекта, но мы должны перемещать его на большее расстояние.)
  • Почему инженеры используют простые машины? (Возможные ответы: инженеры творчески используют свои знания в области естественных наук и математики, чтобы сделать нашу жизнь лучше, часто используя простые машины. Они изобретают инструменты, облегчающие работу. Они выполняют огромные задачи, которые невозможно было бы выполнить без механического преимущества простых машин. Они проектировать конструкции и инструменты для лучшего и более эффективного использования наших экологических ресурсов.)

Напомните студентам, что инженеры учитывают множество факторов при планировании, проектировании и создании чего-либо.Спросите у студентов:

  • Какие соображения должен учитывать инженер при проектировании новой конструкции? (Возможные ответы: размер и форма (конструкция) конструкции, доступные строительные материалы, расчет необходимых материалов, сравнение материалов и стоимости, изготовление чертежей и т. Д.)
  • Какие соображения должен учитывать инженер при выборе площадки для строительства новой конструкции? (Возможные ответы: физические характеристики участка [топография, грунтовый фундамент], расстояние до строительных ресурсов [дерево, камень, вода, бетон], пригодность для использования по назначению [найдите школу или продуктовый магазин поблизости от места проживания людей].)

Таблица KWL (Заключение): Как класс, завершите столбец L таблицы KWL, как описано в разделе «Оценка перед уроком». Составьте список всего, что они узнали о простых машинах. Были ли даны ответы на все вопросы W? Что нового они узнали?

Домашнее задание

Контрольный тест на вынос: Оцените понимание учащимися урока, назначив Рабочий лист «Простые машины» в качестве контрольного опроса на дом.

Мероприятия по продлению урока

Воспользуйтесь прилагаемой «Охотой на мусор» «Простые машины»! Рабочий лист для веселой охоты за мусором.Попросите учащихся найти примеры всех простых машин, используемых в классе и дома.

Приведите повседневные примеры простых машин и продемонстрируйте, как они работают.

Проиллюстрируйте мощь простых машин, попросив учащихся выполнить задание, не используя простую машину, а затем с ее помощью. Например, создайте демонстрацию рычага, забив гвоздь в кусок дерева. Попросите учащихся попытаться вытащить гвоздь, сначала используя только руки

Принесите множество повседневных примеров простых машин.Раздайте по одному каждому ученику и попросите их подумать, что это за простая машина. Затем попросите учащихся распределить предметы по категориям с помощью простых машин и объяснить, почему они решили разместить свой предмет именно там. Спросите студентов, какой была бы жизнь без этого предмета. Подчеркните: простые машины облегчают нашу жизнь.

Интерактивная игра на простых машинах представлена ​​на веб-сайте Edheads: http://edheads.org.

Инженерное конструкторское развлечение с рычагами: дайте каждой паре учеников мешалку для краски, 3 небольших пластиковых стаканчика, кусок клейкой ленты и деревянный брусок или катушку (или что-нибудь подобное).Попросите учеников сконструировать простой рычаг машины, который будет бросать мяч для пинг-понга (или любой другой маленький мяч) как можно выше. На этапе перепроектирования разрешите учащимся запрашивать материалы для добавления к их дизайну. Проведите небольшое соревнование, чтобы узнать, какая группа смогла отправить мяч для пинг-понга в высокий полет. Обсудите с классом, почему именно этот дизайн оказался успешным по сравнению с другими вариантами, замеченными во время соревнований.

Дополнительная поддержка мультимедиа

См. Http: // edheads.org для хорошего веб-сайта, посвященного простым машинам, с учебными материалами, включая обучающие игры и задания.

использованная литература

Dictionary.com. ООО «Издательская группа« Лексико ». По состоянию на 11 января 2006 г. (Источник некоторых словарных определений с некоторой адаптацией) http://www.dictionary.com

Простые машины. inQuiry Almanack, Интернет-институт Франклина, электронное обучение Unisys и Drexel. По состоянию на 11 января 2006 г.http://sln.fi.edu/qa97/spotlight3/spotlight3.html

авторское право

© 2005 Регенты Университета Колорадо.

Авторы

Грег Рэмси; Глен Сиракавит; Лоуренс Э. Карлсон; Жаклин Салливан; Малинда Шефер Зарске; Дениз Карлсон, при участии студентов, участвовавших в весеннем курсе подготовки инженерного корпуса K-12 (К-12) весной 2005 года.

Программа поддержки

Комплексная программа преподавания и обучения, Инженерный колледж, Университет Колорадо в Боулдере

Благодарности

Содержание этих программ электронных библиотек было разработано в рамках Комплексной программы преподавания и обучения в рамках гранта GK-12 Национального научного фонда.0338326. Однако это содержание не обязательно отражает политику Национального научного фонда, и вам не следует предполагать, что оно одобрено федеральным правительством.

Последнее изменение: 13 августа 2021 г.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *