50 крутых вещей для печати на 3D-принтере / Top 3D Shop corporate blog / Habr
Нет идей для 3D-печати? Надоели никчемные безделушки? Перед вами список 50 крутых действительно полезных вещей для 3D-печати.
Как и мы, вы просто в восторге от возможностей 3D-печати. Но, к сожалению, горизонт завален безделушками, финтифлюшками и прочими ненужными штуками. Нам грозит опасность быть погребенными под кучей никому не нужного хлама.
Сбросьте с себя оковы посредственности! Давайте создавать действительно полезные вещи! Перед вами список крутых вещей, которые можно изготовить на 3D-принтере прямо сейчас. Докажите своим близким и любимым, что эта чудесная технология может найти ежедневное и практическое применение.
Нет доступа к 3D-принтеру? Не беда. Просто загрузите файлы на нашу систему сравнения цен 3D-печати и выберите самую выгодную стоимость, ОНЛАЙН!
Нет 3D-принтера для печати этих замечательных вещей? Тогда приходите к <a href=«top3dshop.ru]нам, наши специалисты подберут вам лучшее оборудование!
А теперь подробнее о полезных вещах.
Крутая вещь для 3D печати №1: пластмассовый молоток
THWACK это способный к тяжелый работе пластмассовый молоток общего назначения. Отлично подходит для забивания гвоздей в доме, плотно закрывающихся объектов, «ударной» аранжировки в джаз-бэнде и запугивания незнакомцев.
Скачать с ThingiVerse
Крутая вещь для 3D печати №2: полка для розетки
Приставьте к вашей розетке полочку для подпорки телефона во время зарядки. В полке имеется наклонная выемка, что позволяется держать ваш смартфон или планшет в вертикальном положении.
Скачать с ThingiVerse
Крутая вещь для 3D печати №3: мыльница
Элегантная мыльница для ванной комнаты с двумя моющимися отделениями. По желанию вы можете изменить узор внутреннего поддона.
Скачать с ThingiVerse
Крутая вещь для 3D печати №4: ручки с ярлычками для тумбочки
Искусство хранения не обязательно должно быть скучным. Hobb Knob – это маленькая ручка с ярлычком для описания вещей, хранимых в ящиках. Теперь вы никогда не потеряете свои носки!
Скачать с ThingiVerse
Крутая вещь для 3D печати №5: подстаканники с геометрическими узорами
Когда дело касается горячих напитков, неизбежный риск представляют круги от кружки. Всё принимает куда более серьезные обороты, если в доме водится кофе-зависимый обитатель. Эти подстаканники доступные в трех видах дизайна помогут избежать неприглядных пятен.
Скачать с Pinshape
Крутая вещь для 3D печати №6: лампа на шарнирах
Эта модульная лампа на шарнирах состоит из 6 основных элементов: основа, корпус и верхняя часть со светодиодами. Чтобы сделать лампу более высокой, вы можете добавить необходимое количество элементов.
Скачать с MyMiniFactory
Крутая вещь для 3D печати №7: открывалка для бутылок одной рукой
Эта открывался для бутылок в форме бумеранга пригодится людям, испытывающим трудности при выполнении действий, требующих приложения силы, например при открывании пластиковой бутылки. Распечатайте ее и подарите своей бабушке. Она по достоинству оценит этот жест.
Скачать с ThingiVerse
Крутая вещь для 3D печати №8: насадка душа
Купание под водопадом в вашем списке вещей, которые стоит сделать перед смертью? Следующая лучшая вещь — это 3D-напечатанная насадка душа (вероятно).
Скачать с ThingiVerse
Крутая вещь для 3D печати №9: секретная полочка
Спрячьте ценные документы и заначку от любопытных взглядов на этой потайной полке.
Скачать с ThingiVerse
Крутая вещь для 3D печати №10: ручка для банки
Усовершенствуйте пустые банки из-под варенья с помощью напечатанной ручки. Что может быть проще?
Скачать с ThingiVerse
Крутая вещь для 3D печати №11: пластмассовый гаечный ключ
Полноценный пластмассовый гаечный ключ общего назначения. Собственно для завинчивания и вывинчивания по дому.
Скачать с ThingiVerse
Крутая вещь для 3D печати №12: визитница
«Какой нежный желтоватый оттенок, и толщина подобрана со вкусом, о боже, даже водяные знаки.» У вас есть такая визитка? Найдите ей пару в виде этой визитницы, печатаемой целиком (да, уже с откидной крышкой). Инструкции по добавлению индивидуального логотипа включены.
Скачать с ThingiVerse
Крутая вещь для 3D печати №13: держатель туалетной бумаги в форме инопланетного захватчика
Сделайте вашу ванную комнату ярче с функциональной распечатанной моделью классического инопланетного захватчика… кхм, держащего вашу туалетную бумагу.
Скачать с ThingiVerse
Крутая вещь для 3D печати №14: подъёмная платформа
Перед вами полностью собранная подъёмная платформа. Печатается целиком. Нет нужды возиться с кучей деталей. Регулируемая высота может использоваться для подъема или поддержки объекта приемлемого веса.
Скачать с ThingiVerse
Крутая вещь для 3D печати №15: автопоилка для растений
Комнатные растения стали жертвой невнимания? ЗАБУДЬТЕ ОБ ЭТОМ. Распечатайте этот простейшую автоматическую поилку для растений, и ваша совесть останется чистой.
Скачать с ThingiVerse
Крутая вещь для 3D печати №16: держатель для наушников-капелек
Мы тратим немало денег на покупку наушников на ходу, но недостаточно защищаем их при использовании. Ничего не опасаясь, спрячьте наушники в этом 3D напечатанном держателе.
Скачать с ThingiVerse
Крутая вещь для 3D печати №17: ручка для пакета
Нам всем знакома эта ситуация. Тащишься домой из супермаркета, нагруженный пакетами с продуктами. Сила гравитации заставляет пластик врезаться в ваши ладони, я прав? ХВАТИТ. Напечатайте эти ручки для пакетов и навсегда забудьте о натертых ладонях!
Скачать с ThingiVerse
Крутая вещь для 3D печати №18: подставка для планшета
Есть случаи, когда при работе со смарт-устройством необходимо освободить руки, например, при просмотре ТВ шоу или рецептов при готовке,. Эта простая подставка для поддержки планшетов с диагональю 7 дюймов и больше, годится как для портретного, так и для альбомного режимов.
Скачать с Pinshape
Крутая вещь для 3D печати №19: автопоилка для растений №2
Еще одно хитрое изобретение для садоводческого искусства. Оно особенно подходит для кухонных растений. В следующий раз, когда вы купите свежую зелень для готовки, пересадите ее в это аккуратно устройство, и она останется свежей в течение всей недели.
Скачать с ThingiVerse
Крутая вещь для 3D печати №20: дверной упор
Надоело, что дома или в офисе все хлопают дверьми? Тогда вам нужен БЕСКОМПРОМИССНЫЙ дверной упор. Легкий вес, безопасен для детей, предназначен для простой установки и простого изготовления на FDM 3D принтере. Создатель упора также утверждает, что устройство может использоваться для отражения зомби-атак, однако эта версия не была проверена.
Скачать с ThingiVerse
Крутая вещь для 3D печати №21: скребок для лобового стекла
Если хотите легко и быстро избавиться от снега и льда на лобовом стекле вашей машины с помощью этого удобного скребка. Печатается без опоры, на конце имеется отверстие для шнурка.
Скачать с ThingiVerse
Крутая вещь для 3D печати №22: регулятор расхода воды в поливочном шланге
Эта специальная насадка регулирует расход воды в поливочном шланге, около 2 л в минуту. Отлично, если в разгар лета у вас установлены ограничения на расход воды.
Скачать с ThingiVerse
Крутая вещь для 3D печати №23: модульная полка для вина
Неважно, будь вы новичком или ценителем в мире вина, отличным решением для хранения благородного напитка станет эта модульная полка для винных бутылок WIRA. В соответствии с вашей коллекцией ее можно расширить (или сузить), печатая лишь необходимое количество модулей.
Скачать с 3DShook
Крутая вещь для 3D печати №24: свисток для защиты
Этот свисток оригинального дизайна легко сделать и носить с собой. Износостойкий и очень громкий. Насколько громкий? Как насчет 118 децибел? Этого более чем достаточно, чтобы люди услышали о вашей чрезвычайной ситуации.
Скачать с ThingiVerse
Крутая вещь для 3D печати №25: Держатель для наушников Apple
Скачать с ThingiVerse
Крутая вещь для 3D печати №26: Держатель зонта для инвалидного кресла
Скачать с MyMiniFactory
Крутая вещь для 3D печати №28: Защита для диска
Скачать с MyMiniFactory
Крутая вещь для 3D печати №29: Форма для снежков
Скачать с ThingiVerse
Крутая вещь для 3D печати №30: Защита для винной бутылки
Скачать с MyMiniFactory
Крутая вещь для 3D печати №31: Карманная пепельница
Скачать с MyMiniFactory
Крутая вещь для 3D печати №32: Кольцо-держатель для стакана
Скачать с MyMiniFactory
Крутая вещь для 3D печати №33: Стенд для пульта Apple
Скачать с MyMiniFactory
Крутая вещь для 3D печати №34: Держатель для ключей
Скачать с MyMiniFactory
Крутая вещь для 3D печати №35: Держатель столовых приборов для людей с ограниченными возможностями
Скачать с MyMiniFactory
Крутая вещь для 3D печати №36: Крышка для винной бутылки
Скачать с MyMiniFactory
Крутая вещь для 3D печати №37: Держатель для бумажного стаканчика
Скачать с MyMiniFactory
Крутая вещь для 3D печати №38: Кейс для лезвия
Скачать с MyMiniFactory
Крутая вещь для 3D печати №39: Держатель для детской бутылочки
Скачать с MyMiniFactory
Крутая вещь для 3D печати №40: Вешалка для полотенец
Скачать с MyMiniFactory
Крутая вещь для 3D печати №41: Держатель для стакана
Скачать с MyMiniFactory
Крутая вещь для 3D печати №42: Держатель для телефона в душе
Скачать с MyMiniFactory
Крутая вещь для 3D печати №43: Держатель для пивных стаканов
Скачать с MyMiniFactory
Крутая вещь для 3D печати №44: Подставка для MacBook Pro
Скачать с MyMiniFactory
Крутая вещь для 3D печати №45: Защита для SD-карт
Скачать с MyMiniFactory
Крутая вещь для 3D печати №46: Корпус для батареек
Скачать с MyMiniFactory
Крутая вещь для 3D печати №47: Держатель для мороженых рожков
Скачать с MyMiniFactory
Крутая вещь для 3D печати №48: Душевой набор
Скачать с MyMiniFactory
Крутая вещь для 3D печати №49: Яичный сепаратор
Скачать с MyMiniFactory
Крутая вещь для 3D печати №50: Катушка для кабеля
Скачать с MyMiniFactory
Хотите больше интересных новостей из мира 3D-технологий?
Подписывайтесь на нас в соц. сети facebook:
habr.com
Чем же печатают 3D-принтера?
3D печать основана на технологии послойного выращивания твёрдых объектов из различных материалов. Объёмные модели печатаются из пластика, бетона, гидрогеля, металла и даже из живых клеток и шоколада. В настоящей статье мы представим краткий обзор наиболее популярных материалов для 3D печати.
ABC-пластик
АBC-пластик известен как акрилонитрилбутадиенстирол. Это один из лучших расходных материалов для 3D печати. Такой пластик не имеет запаха, не токсичен, ударопрочен и эластичен. Температура плавления АВС-пластика составляет от 240°С до 248°С. Он поступает в розничную продажу в виде порошка или тонких пластиковых нитей, намотанных на бобины.
3D модели из АВС-пластика долговечны, но не переносят прямой солнечный свет. С помощью такого пластика можно получить только непрозрачные модели.
АВС-пластик для 3D печати
Акрил
Акрил используется в 3D печати для создания прозрачных моделей. При использовании акрила необходимо учитывать следующие особенности: для данного материала нужна более высокая температура плавления, чем для АВС-пластика, и он очень быстро остывает и твердеет. В разогретом акриле появляется множество мелких воздушных пузырьков, которые могут вызвать визуальные искажения готового изделия.
Изделия, напечатанные из акрила
Бетон
В настоящее время изготовлены пробные образцы 3D принтеров для печати бетоном. Это огромные печатающие устройства, которые кропотливо, слой за слоем, «печатают» из бетона строительные детали и конструкции. Такой 3D принтер может всего лишь за 20 часов «напечатать» жилой двухэтажный дом общей площадью 230 м2.
Для 3D печати используется усовершенствованный сорт бетона, формула которого на 95% совпадает с формулой обычного бетона.
Изделия, напечатанные бетоном
Гидрогель
Учёные из иллинойского Университета (США) напечатали при помощи 3D принтера и гидрогеля биороботов длиной 5-10 мм. На поверхность биороботов поместили клетки сердечной ткани, которые распространились по гидрогелю и начали сокращаться, приводя в движение робота. Такие роботы из гидрогеля способны передвигаться со скоростью 236 микрометров в секунду. В будущем они будут запускаться в организм человека для обнаружения и нейтрализации опухолей и токсинов, а также для транспортировки лекарственных препаратов к месту назначения.
Биороботы из гидрогеля, напечатанные 3D принтером
Бумага
В некоторых 3D принтерах в качестве материала для печати используется обычная бумага формата А4. Так как бумага – это доступный и недорогой материал, то и бумажные модели получаются недорогими и доступными для пользователей. Такие модели печатаются послойно, причём каждый последующий слой бумаги вырезается принтером и наклеивается на предыдущий. Модели из бумаги печатаются быстро, но не могут похвастаться прочностью или эстетичностью. Они идеально подойдут для быстрого прототипирования компьютерного проекта.
3D модели, напечатанные из бумаги
Гипс
В современной 3D печати широко применяются гипсовые материалы. Модели, изготовленные из гипса, недолговечны, но имеют очень низкую себестоимость. Такие модели идеально подходят для изготовления объектов, предназначенных для презентаций. Их можно показывать в качестве образца заказчикам и клиентам, они отлично передадут форму, структуру и размер оригинального изделия. Так как гипсовые модели отличаются высокой термостойкостью, их используют в качестве образцов для литья.
3D модель, напечатанная из гипса
Деревянное волокно
Изобретатель Кай Парти разработал специальное деревянное волокно для 3D печати. Волокно состоит из дерева и полимера и по своим свойствам похоже на полиактид (PLA). Комбинированный материал позволяет получить долговечные и твёрдые модели, которые внешне выглядят как деревянные изделия и имеют запах свежеспиленного дерева. В настоящее время инновационный материал используется только в самореплицирующихся принтерах RepRap.
3D модель, напечатанная деревянным волокном
Лёд
В 2006 году два канадских профессора получили грант на развитие технологии 3D печати ледяных фигур. За три года они научились создавать при помощи 3D принтеров небольшие ледяные предметы. Печать протекает при температуре -22°С, в качестве расходных материалов используются вода и метиловый эфир, подогретый до температуры 20°С.
Фигура, напечатанная льдом
Металлический порошок
Ни один пластик не сможет заменить металл с его приятным мягким блеском и высокой прочностью. Поэтому в 3D печати очень часто используется порошок из лёгких и драгоценных металлов: меди, алюминия, их сплавов, а также золота и серебра. Однако металлические модели не обладают достаточной химической стойкостью и имеют высокую теплопроводность, поэтому в металлический порошок для печати добавляют стекловолоконные и керамические вкрапления.
Украшения из металлического порошка, напечатанные 3D принтером
Нейлон
Печать нейлоном имеет много общего с печатью АВС-пластиком. Исключениями являются более высокая температура печати (около 320°С), высокая способность впитывать воду, более продолжительный период застывания, необходимость откачки воздуха из экструдера из-за токсичности компонентов нейлона. Нейлон – это достаточно скользкий материал, для его применения следует оснастить экструдер шипами. Несмотря на перечисленные недостатки, нейлон с успехом используют в 3D печати, так как детали из данного материала получаются не такими жёсткими, как из АВС-пластика, и для них можно использовать шарниры скольжения.
Нейлоновая нить для 3D печати
Изделия из нейлона, напечатанные 3D принтером
Поликапролактон (PCL)
Поликапролактон близок по свойствам к биоразлагаемым полиэфирам. Это один из самых популярных расходных материалов для 3D печати. Он имеет низкую температуру плавления, быстро затвердевает, обеспечивает прекрасные механические свойства готовых изделий, легко разлагается в человеческом организме и безвреден для человека. Кроме того, он может применяться сразу в нескольких технологиях 3D печати: SLS, ZCorp и FDM.
Поликапролактон для 3D принтера
Поликарбонат (PC)
Поликарбонат – это твёрдый пластик, который способен сохранять свои физические свойства в условиях экстремально высоких и экстремально низких температур. Обладает высокой светонепроницаемостью, имеет высокую температуру плавления, удобен для экструзионной обработки. При этом его синтез сопряжён с рядом трудностей и экологически не безвреден. Используется для печати сверхпрочных моделей в нескольких технологиях 3D печати: SLS, LOM и FDM.
Полилактид (PLA)
Полилактид – это самый биологически совместимый и экологически чистый материал для 3D принтеров. Он изготавливается из остатков биомассы, силоса сахарной свёклы или кукурузы. Имея массу положительных свойств, полилактид имеет два существенных недостатка. Во-первых, изготовленные из него модели недолговечны и постепенно разлагаются под действием тепла и света. Во-вторых, стоимость производства полилактида очень высока, а значит и стоимость моделей будет значительно выше аналогичных моделей, изготовленных из других материалов. Используется в технологиях 3D печати: SLS и FDM.
Полилактидная нить и изделия, напечатанные полилактидом на 3D принтере
Полипропилен (PP)
Полипропилен – это самая лёгкая из всех ныне существующих пластических масс. По сравнению с полиэтиленом низкого давления хуже плавится и лучше противостоит истиранию. При этом уязвим к активному кислороду и деформируется при отрицательных температурах.
Полипропилен для 3D печати
Полифенилсульфон (PPSU)
Данный материал пришёл в 3D печать из авиапромышленности. Он практически не горит, характеризуется теплостойкостью, высокой твёрдостью. Напоминает обычное стекло, но превосходит его по прочности. Используется в технологиях 3D печати: SLS и FDM.
Полиэтилен низкого давления (HDPE)
Это самый распространённый вид пластмассы в мире, из которого изготавливают ПЭТ-бутылки, канистры, трубы, плёнки, пакеты и т.д. В 3D печати полиэтилен низкого давления является непревзойдённым лидером. Данный материал может быть использован в любой технологии 3D печати.
Полиэтиленовая обувь, напечатанная на 3D принтере
Шоколад
Британские учёные представили публике первый шоколадный 3D принтер, который печатает любые шоколадные фигурки, заказанные оператором. Принтер наносит каждый следующий слой шоколада поверх предыдущего. Благодаря способности шоколада быстро застывать и твердеть при охлаждении, процесс печати протекает довольно быстро. В ближайшем будущем такие принтеры будут востребованы в кондитерских и ресторанах.
Шоколадный принтер в работе
Прочие материалы
Существуют 3D принтеры, которые предназначены для печати глиняными смесями, известковым порошком, продуктами питания, живыми органическими клетками и многими другими удивительными материалами. О том, какие материалы для 3D печати будут использоваться в ближайшем будущем, остаётся лишь догадываться.
sitmaster.by
3D-печать для чайников | Энциклопедия 3D-печати
Термин 3D-печать
Термин 3D-печать имеет несколько синонимов, один из которых достаточно кратко и точно характеризует сущность процесса – «аддитивное производство», то есть производство за счет добавления материала. Термин был придуман не случайно, ибо в этом и состоит основное отличие множественных технологий 3D-печати от привычных методов промышленного производства, получивших в свою очередь название «субтрактивных технологий», то есть «отнимающих». Если при фрезеровке, шлифовке, резке и прочих схожих процедурах лишний материал удаляется с заготовки, то в случае с аддитивным производством материал постепенно добавляется до получения цельной модели. В скором времени 3D-печать будет опробована даже на Международной космической станции
Строго говоря, многие традиционные методы можно было бы отнести к «аддитивным» в широком смысле этого слова – например, литье или клепку. Однако стоит иметь в виду, что в этих случаях либо требуется расход материалов на изготовление специфических инструментов, занятых в производстве конкретных деталей (как в случае с литьем), либо весь процесс сводится к соединению уже готовых деталей (сварке, клепке и пр.). Для того чтобы технология классифицировалась как «3D-печать», необходимо построение конечного продукта из сырья, а не заготовок, а формирование объектов должно быть произвольным – то есть без использования форм. Последнее означает, что аддитивное производство требует программной составляющей. Грубо говоря, аддитивное производство требует управления с помощью компьютеров, чтобы форму конечных изделий можно было определять за счет построения цифровых моделей. Именно этот фактор и задержал широкое распространение 3D-печати до того момента, когда числовое программное управление и 3D-проектирование стали общедоступными и высокопроизводительными.
Методы 3D-печати
Технологий 3D-печати существует великое множество, названий же для них еще больше ввиду патентных ограничений. Тем не менее, можно попробовать разделить технологии по основным направлениям:Экструзионная печать
Сюда входят такие методы, как послойное наплавление (FDM) и многоструйная печать (MJM). В основе этого метода лежит выдавливание (экструзия) расходного материала с последовательным формированием готового изделия. Как правило, расходные материалы состоят из термопластиков, либо композитных материалов на их основе.Плавка, спекание или склеивание
Этот подход основывается на соединении порошкового материала в единое целое. Формирование производится разными способами. Наиболее простым является склеивание, как в случае со струйной трехмерной печатью (3DP). Подобные принтеры наносят на рабочую платформу тонкие слои порошка, которые затем выборочно склеиваются связующим материалом. Порошки могут состоять из практически любого материала, который можно измельчить до состояния пудры – пластика, древесины, металла. Эта модель автомобиля Aston Martin, принадлежавшего Джеймсу Бонду, была успешно напечатана на SLS-принтере компании Voxeljet и не менее успешно взорвана во время съемок фильма «Координаты Скайфолл» вместо дорогого оригинала
Наиболее популярными же в данной категории стали технологии лазерного спекания (SLS и DMLS) и плавки (SLM), позволяющие создавать цельнометаллические детали. Как и в случае со струйной трехмерной печатью, эти устройства наносят тонкие слои порошка, но материал не склеивается, а спекается или плавится с помощью лазера. Лазерное спекание (SLS) применяется для работы как с пластиковыми, так и с металлическими порошками, хотя металлические гранулы обычно имеют более легкоплавкую оболочку, а после печати дополнительно спекаются в специальных печах. DMLS – вариант SLS установок с более мощными лазерами, позволяющими спекать непосредственно металлические порошки без добавок. SLM-принтеры предусматривают уже не просто спекание частиц, а их полную плавку, что позволяет создавать монолитные модели, не страдающие от относительной хрупкости, вызываемой пористостью структуры. Как правило, принтеры для работы с металлическими порошками оснащаются вакуумными рабочими камерами, либо замещают воздух инертными газами. Подобное усложнение конструкции вызывается необходимостью работы с металлами и сплавами, подверженными оксидации – например, с титаном.
Стереолитография
Схема работы SLA-принтераСтереолитографические принтеры используют специальные жидкие материалы, называемые «фотополимерными смолами». Термин «фотополимеризация» указывает на способность материала затвердевать под воздействием света. Как правило, такие материалы реагируют на облучение ультрафиолетом.
Смола заливается в специальный контейнер с подвижной платформой, которая устанавливается в позиции возле поверхности жидкости. Слой смолы, покрывающий платформу, соответствует одному слою цифровой модели. Затем тонкий слой смолы обрабатывается лазерным лучом, затвердевая в точках соприкосновения. По окончании засветки платформа вместе с готовым слоем погружаются на толщину следующего слоя, и засветка производится вновь.
Ламинирование
Схема работы 3D-принтеров, использующих технологию ламинирования (LOM)Некоторые 3D-принтеры выстраивают модели, используя листовые материалы – бумагу, фольгу, пластиковую пленку.
Слои материала наклеиваются друг на друга и обрезаются по контурам цифровой модели с помощью лазера или лезвия.
Такие установки хорошо подходят для макетирования и могут использовать очень дешевые расходные материалы, включая обычную офисную бумагу. Тем не менее, сложность и шумность таких принтеров, вкупе с ограниченными возможностями изготовляемых моделей ограничивают их популярность.
Наиболее популярными методами 3D-печати, применяемыми в быту и в офисных условиях стали моделирование методом послойного наплавления (FDM) и лазерная стереолитография (SLA).
Остановимся на этих технологиях поподробнее.
Печать методом послойного наплавления (FDM)
FDM – пожалуй, наиболее простой и доступный метод трехмерного построения, что и обуславливает его высокую популярность.Высокий спрос на FDM-принтеры ведет к быстрому снижению цен на устройства и расходные материалы, наряду с развитием технологии в направлении удобства эксплуатации и повышения надежности.
Расходные материалы
Катушка с нитью из ABS-пластика и готовая модельFDM-принтеры предназначены для печати термопластиками, которые обычно поставляются в виде тонких нитей, намотанных на катушки. Ассортимент «чистых» пластиков весьма широк. Одним из наиболее популярных материалов является полилактид или «PLA-пластик». Этот материал изготавливается из кукурузы или сахарного тростника, что обуславливает его нетоксичность и экологичность, но делает его относительно недолговечным. ABS-пластик, наоборот, очень долговечен и износоустойчив, хотя и восприимчив к прямому солнечному свету и может выделять небольшие объемы вредных испарений при нагревании. Из этого материала производятся многие пластиковые предметы, которыми мы пользуемся на повседневной основе: корпуса бытовых устройств, сантехника, пластиковые карты, игрушки и т.д.
Кроме PLA и ABS возможна печать нейлоном, поликарбонатом, полиэтиленом и многими другими термопластиками, широко распространенными в современной промышленности. Возможно и применение более экзотичных материалов – таких, как поливиниловый спирт, известный как «PVA-пластик». Этот материал растворяется в воде, что делает его весьма полезным при печати моделей сложной геометрической формы. Но об этом чуть ниже.
Модель, изготовленная из Laywoo-D3. Изменение температуры экструзии позволяет добиваться разных оттенков и имитировать годовые кольца
Вовсе необязательно печатать однородными пластиками. Возможно и применение композитных материалов, имитирующих древесину, металлы, камень. Такие материалы используют все те же термопластики, но с примесями непластичных материалов.
Так, Laywoo-D3 состоит отчасти из натуральной древесной пыли, что позволяет печатать «деревянные» изделия, включая мебель.
Материал под названием BronzeFill имеет наполнитель из настоящей бронзы, а изготовленные из него модели поддаются шлифовке и полировке, достигая высокой схожести с изделиями из чистой бронзы.
Стоит лишь помнить, что связующим элементом в композитных материалах служат термопластики – именно они и определяют пороги прочности, термоустойчивости и другие физические и химические свойства готовых моделей.
Экструдер
Экструдер – печатная головка FDM-принтера. Строго говоря, это не совсем верно, ибо головка состоит из нескольких частей, из которых непосредственно «экструдером» является лишь подающий механизм. Тем не менее, по устоявшейся традиции термин «экструдер» повсеместно применяется в качестве синонима целой печатающей сборки. Общая схема конструкции FDM-экструдера
Экструдер предназначен для плавки и нанесения термопластиковой нити. Первый компонент – механизм подачи нити, состоящий из валиков и шестерней, приводимых в движение электромотором. Механизм осуществляет подачу нити в специальную нагреваемую металлическую трубку с соплом небольшого диаметра, называемую «хот-энд» или просто «сопло». Тот же механизм используется и для извлечения нити, если необходима смена материала.
Хот-энд служит для нагревания и плавления нити, подаваемой протягивающим механизмом. Как правило, сопла производятся из латуни или алюминия, хотя возможно использование более термоустойчивых, но и более дорогих материалов. Для печати наиболее популярными пластиками вполне достаточно и латунного сопла. Собственно «сопло» крепится к концу трубки с помощью резьбового соединения и может быть заменено на новое в случае износа или при необходимости смены диаметра. Диаметр сопла обуславливает толщину расплавленной нити и, как следствие, влияет на разрешение печати. Нагревание хот-энда регулируется термистором. Регулировка температуры очень важна, так при перегреве материала может произойти пиролиз, то есть разложение пластика, что способствует как потере свойств самого материала, так и забиванию сопла.
Экструдер FDM-принтера PrintBox3D One
Для того чтобы нить не расплавилась слишком рано, верхняя часть хот-энда охлаждается с помощью радиаторов и вентиляторов. Этот момент имеет огромное значение, так как термопластики, проходящие порог температуры стеклования, значительно расширяются в объеме и повышают трение материала со стенками хот-энда. Если длина такого участка слишком велика, протягивающему механизму может не хватить сил для проталкивания нити.
Количество экструдеров может варьироваться в зависимости от предназначения 3D-принтера. Простейшие варианты используют одну печатающую головку. Двойной экструдер значительно расширяет возможности устройства, позволяя печатать одну модель двумя разными цветами, а также использовать разные материалы. Последний момент важен при построении сложных моделей с нависающими элементами конструкции: FDM-принтеры не могут печатать «по воздуху», так как наносимым слоям требуется опора. В случае с навесными элементами приходится печатать временные опорные структуры, которые удаляются по завершении печати. Процесс удаления чреват повреждением самой модели и требует аккуратности. Кроме того, если модель имеет сложную структуру с труднодоступными внутренними полостями, построение обычных опор может оказаться непрактичным виду сложности удаления лишнего материала.
Готовая модель с опорами из PVA-пластика (белого цвета) до и после промывки
В таких случаях весьма кстати приходится тот самый водорастворимый поливиниловый спирт (PVA-пластик). С помощью двойного экструдера можно построить модель из водоупорного термопластика, используя PVA для создания опор.
После окончания печати PVA можно просто растворить в воде и получить сложное изделие идеального качества.
Некоторые модели FDM-принтеров могут использовать три или даже четыре экструдера.
Рабочая платформа
Подогреваемая платформа, накрытая съемным стеклянным рабочим столикомПостроение моделей происходит на специальной платформе, зачастую оснащаемой нагревательными элементами. Подогрев требуется для работы с целым рядом пластиков, включая популярный ABS, подверженных высокой степени усадки при охлаждении. Быстрая потеря объема холодными слоями в сравнении со свеженанесенным материалом может привести к деформации модели или расслоению. Подогрев платформы позволяет значительно выравнивать градиент температур между верхними и нижними слоями.
Для некоторых материалов подогрев противопоказан. Характерный пример – PLA-пластик, который требует достаточно длительного времени для затвердевания. Подогрев PLA может привести к деформации нижних слоев под тяжестью верхних. При работе с PLA обычно принимаются меры не для подогрева, а для охлаждения модели. Такие принтеры имеют характерные открытые корпуса и дополнительные вентиляторы, обдувающие свежие слои модели.
Калибровочный винт рабочей платформы, покрытой синим малярным скотчем
Платформа требует калибровки перед печатью, чтобы сопло не задевало нанесенные слои и не отходило слишком далеко, вызывая печать «по воздуху», что приводит к образованию «вермишели» из пластика. Процесс калибровки может быть как ручным, так и автоматическим. В ручном режиме калибровка производится позиционированием сопла в разных точках платформы и регулировкой наклона платформы с помощью опорных винтов для достижения оптимальной дистанции между поверхностью и соплом.
Как правило, платформы оснащаются дополнительным элементом – съемным столиком. Такая конструкция упрощает чистку рабочей поверхности и облегчает снятие готовой модели. Столики производятся из различных материалов, включая алюминий, акрил, стекло и пр. Выбор материала для изготовления столика зависит от наличия подогрева и расходных материалов, под которые оптимизирован принтер.
Для лучшего схватывания первого слоя модели с поверхностью столика зачастую применяются дополнительные средства, включая полиимидную пленку, клей и даже лак для волос! Но наиболее популярным средством служит недорогой, но эффективный малярный скотч. Некоторые производители делают перфорированные столики, хорошо удерживающие модель, но сложные в очистке. В целом, целесообразность нанесения дополнительных средств на столик зависит от расходного материала и материала самого столика.
Механизмы позиционирования
Схема работы позиционирующих механизмовСамо собой, печатающая головка должна перемещаться относительно рабочей платформы, причем в отличие от обычных офисных принтеров, позиционирование должно производиться не в двух, а в трех плоскостях, включая регулировку по высоте.
Схема позиционирования может варьироваться. Самый простой и распространенный вариант подразумевает крепление печатающей головки на перпендикулярных направляющих, приводимых в движение пошаговыми двигателями и обеспечивающими позиционирование по осям X и Y.
Вертикальное же позиционирование осуществляется за счет передвижения рабочей платформы.
С другой стороны, возможно передвижение экструдера в одной плоскости, а платформы – в двух.
Дельта-принтер ORION производства компании SeemeCNC
Один из вариантов, набирающих популярность, является использование дельтаобразной системы координат.
Подобные устройства в промышленности называют «дельта-роботами».
В дельта-принтерах печатная головка подвешивается на трех манипуляторах, каждый из которых передвигается по вертикальной направляющей.
Синхронное симметричное движение манипуляторов позволяет изменять высоту экструдера над платформой, а ассиметричное движение вызывает смещение головки в горизонтальной плоскости.
Вариантом такой системы является обратный дельтовидный дизайн, где экструдер крепится неподвижно к потолку рабочей камеры, а платформа передвигается на трех опорных манипуляторах.
Дельта-принтеры имеют цилиндрическую область построения, а их конструкция облегчает увеличение высоты рабочей зоны с минимальными изменениями дизайна за счет удлинения направляющих.
В итоге все зависит от решения конструкторов, но основополагающий принцип не меняется.
Управление
Типичный контроллер на основе Arduino, оснащенный дополнительными модулямиУправление работой FDM-принтера, включая регулировку температуры сопла и платформы, темпа подачи нити и работы пошаговых моторов, обеспечивающих позиционирование экструдера, выполняется достаточно простыми электронными контроллерами. Большинство контроллеров основываются на платформе Arduino, имеющей открытую архитектуру.
Программный язык, используемый принтерами, называется G-код (G-Code) и состоит из перечня команд, поочередно выполняемых системами 3D-принтера. G-код компилируется программами, называемыми «слайсерами» – стандартным программным обеспечением 3D-принтеров, сочетающим некоторые функции графических редакторов с возможностью установки параметров печати через графический интерфейс. Выбор слайсера зависит от модели принтера. Принтеры RepRap используют слайсеры с открытым исходным кодом – такие, как Skeinforge, Replicator G и Repetier-Host. Некоторые компании создают принтеры, требующие использование фирменного программного обеспечения.
Программный код для печати генерируется с помощью слайсеров
В качестве примера можно упомянуть принтеры линейки Cube от компании 3D Systems. Есть и такие компании, которые предлагают фирменное обеспечение, но позволяют использовать и сторонние программы, как в случае с последними поколениями 3D-принтеров компании MakerBot.
Слайсеры не предназначены для 3D-проектирования, как такового. Эта задача выполняется с помощью CAD-редакторов и требует определенных навыков трехмерного дизайна. Хотя новичкам не стоит отчаиваться: цифровые модели самых различных дизайнов предлагаются на многих сайтах, зачастую даже бесплатно. Наконец, некоторые компании и частные специалисты предлагают услуги 3D-проектирования для печати на заказ.
И наконец, 3D-принтеры можно использовать вкупе с 3D-сканерами, автоматизирующими процесс оцифровки объектов. Многие их таких устройств создаются специально для работы с 3D-принтерами. Наиболее известные примеры включают ручной сканер 3D Systems Sense и портативный настольный сканер MakerBot Digitizer.
FDM-принтер MakerBot Replicator 5-го поколения, со встроенным контрольным модулем в верхней части рамы
Пользовательский интерфейс 3D-принтера может состоять из банального USB порта для подключения к персональному компьютеру. В таких случаях управление устройством фактически осуществляется посредством слайсера.
Недостатком такой упрощенности является достаточно высокая вероятность сбоя печати при зависаниях или притормаживании компьютера.
Более продвинутый вариант включает наличие внутренней памяти или интерфейса для карты памяти, что позволяет сделать процесс автономным.
Такие модели оснащаются контрольными модулями, позволяющими регулировать многие параметры печати (например, скорость печати или температуру экструзии). В состав модуля может входить небольшой LCD-дисплей или даже мини-планшет.
Разновидности FDM-принтеров
Профессиональный FDM-принтер Stratasys Fortus 360mc, позволяющий печатать нейлономFDM-принтеры весьма и весьма разнообразны, начиная от простейших самодельных RepRap принтеров и заканчивая промышленными установками, способными печатать крупногабаритные объекты.
Лидером по производству промышленных установок является компания Stratasys, основанная автором технологии FDM-печати Скоттом Крампом.
Простейшие FDM-принтеры можно построить самому. Такие устройства именуют RepRap, где «Rep» указывает на возможность «репликации», то есть самовоспроизведения.
RepRap принтеры могут быть использованы для печати пластиковых деталей, включенных в собственную конструкцию.
Контроллер, направляющие, ремни, моторы и прочие компоненты можно легко приобрести по отдельности.
Разумеется, сборка подобного устройства своими силами требует серьезных технических и даже инженерных навыков.
Некоторые производители облегчают задачу, продавая комплекты для самостоятельной сборки, но подобные конструкторы все равно требуют хорошего понимания технологии.
Вариант популярного RepRap принтера Prusa позднего, третьего поколения
Если же вам по душе мастерить вещи собственными руками, то RepRap принтеры приятно порадуют ценой: средняя стоимость популярного дизайна Prusa Mendel ранних поколений составляет порядка $500 в полной комплектации.
И, несмотря на свою «самодельную сущность», RepRap принтеры вполне способны производить модели с качеством на уровне дорогих фирменных собратьев.
Обыденные же пользователи, не желающие вникать в тонкости процесса, а требующие лишь удобное устройство для бытовой эксплуатации, могут приобрести FDM-принтер в готовом виде.
Многие компании делают упор на развитие именно пользовательского сегмента рынка, предлагая на продажу 3D-принтеры, готовые к печати «прямо из упаковки» и не требующие серьезных навыков в обращении с компьютерами.
Бытовой 3D-принтер Cube производства компании 3D Systems
Самым известным примером бытового 3D-принтера служит 3D Systems Cube.
Хотя это устройство и не блещет огромной зоной построения, сверхвысокой скоростью печати или непревзойденным качеством изготовления моделей, оно удобно в использовании, вполне доступно и безопасно: этот принтер получил необходимую сертификацию для использования даже детьми.
Демонстрация работы FDM-принтера производства компании Mankati: http://youtu.be/51rypJIK4y0
Лазерная стереолитография (SLA)
Стереолитографические 3D-принтеры широко используются в зубном протезированииСтереолитографические принтеры – вторые по популярности и распространенности после FDM-принтеров.
Эти устройства позволяют добиваться исключительно высокого качества печати.
Разрешение некоторых SLA-принтеров исчисляется считанными микронами – неудивительно, что эти устройства быстро завоевали любовь ювелиров и стоматологов.
Программная сторона лазерной стереолитографии практически идентична FDM-печати, поэтому не будем повторяться и затронем лишь отличительные особенности технологии.
Лазеры и проекторы
Проекторная засветка фотополимерной модели на примере DLP-принтера Kudo3D TitanСтоимость стереолитографических принтеров стремительно снижается, что объясняется растущей конкуренцией ввиду высокого спроса и применением новых технологий, удешевляющих конструкцию.
Несмотря на то, что технология обобщенно называется «лазерной» стереолитографией, наиболее современные разработки в большинстве своем применяют ультрафиолетовые светодиодные проекторы.
Проекторы дешевле и надежнее лазеров, не требуют использования деликатных зеркал для отклонения лазерного луча, а также имеют более высокую производительность. Последнее объясняется тем, что контур целого слоя засвечивается целиком, а не последовательно, точка за точкой, как в случае с лазерными вариантами. Этот вариант технологии называется проекторной стереолитографией, «DLP-SLA» или просто «DLP». Тем не менее, на данный момент распространены оба варианта – как лазерные, так и проекторные версии.
Кювета и смола
Фотополимерная смола заливается в кюветуВ качестве расходных материалов для стереолитографических принтеров используется фотополимерная смола, внешне напоминающая эпоксидную. Смолы могут иметь самые разные характеристики, но все они обладают одной чертой, краеугольной для применения в 3D-печати: эти материалы затвердевают под воздействием ультрафиолетового света. Отсюда, собственно, и название «фотополимерные».
В полимеризованном виде смолы могут иметь самые разные физические характеристики. Некоторые смолы напоминают резину, другие – твердые пластики вроде ABS. Возможен выбор разных цветов и степени прозрачности. Главный же недостаток смол и SLA-печати в целом – стоимость расходных материалов, значительно превышающая стоимость термопластиков.
С другой стороны, стереолитографические принтеры в основном применяются ювелирами и стоматологами, не требующими построения деталей большого размера, но ценящими экономию от быстрого и точного прототипирования изделий. Таким образом, SLA-принтеры и расходные материалы окупаются очень быстро.
Пример модели, напечатанной на лазерном стереолитографическом 3D-принтере
Смола заливается в кювету, которая может оснащаться опускаемой платформой. В этом случае принтер использует выравнивающее устройство для разглаживания тонкого слоя смолы, покрывающего платформу, непосредственно перед облучением. По мере изготовления модели платформа вместе с готовыми слоями «утапливается» в смоле. По завершении печати модель вынимается из кюветы, обрабатывается специальным раствором для удаления остатков жидкой смолы и помещается в ультрафиолетовую печь, где производится окончательная засветка модели.
Некоторые SLA и DLP принтеры работают по «перевернутой» схеме: модель не погружается в расходный материал, а «вытягивается» из него, в то время как лазер или проектор размещаются под кюветой, а не над ней. Такой подход устраняет необходимость выравнивания поверхности после каждой засветки, но требует использования кюветы из прозрачного для ультрафиолетового света материала – например, из кварцевого стекла.
Точность стереолитографических принтеров чрезвычайно высока. Для сравнения, эталоном вертикального разрешения для FDM-принтеров считается 100 микрон, а некоторые варианты SLA-принтеров позволяют наносить слои толщиной всего в 15 микрон. Но и это не предел. Проблема, скорее, не столько в точности лазеров, сколько в скорости процесса: чем выше разрешение, тем ниже скорость печати. Использование цифровых проекторов позволяет значительно ускорить процесс, ибо каждый слой засвечивается целиком. Как результат, производители некоторых DLP-принтеров заявляют о возможности печатать с разрешением в один микрон по вертикали!
Видео с выставки CES 2013, демонстрирующее работу стереолитографического 3D-принтера Formlabs Form1: http://youtu.be/IjaUasw64VE
Разновидности стереолитографических принтеров
Настольный стереолитографический принтер Formlabs Form1Как и в случае с FDM-принтерами, SLA-принтеры поставляются в широком диапазоне с точки зрения габаритов, возможностей и стоимости. Профессиональные установки могут стоить десятки, если не сотни тысяч долларов и весить пару тонн, но быстрое развитие настольных SLA и DLP-принтеров приводит к постепенному снижению стоимости аппаратуры без потери качества печати.
Такие модели как Titan 1 обещают сделать стереолитографическую 3D-печать доступной для небольших компаний и даже для бытового использования, имея стоимость в районе $1 000. Form 1 от компании Formlabs уже доступен по отпускной цене производителя в $3 299.
Разработчик же DLP принтера Peachy вообще намеревается преодолеть нижний ценовой барьер в $100.
При этом стоимость фотополимерных смол остается достаточно высокой, хотя средняя цена за последнюю пару лет упала со $150 до $50 за литр.
Само собой, растущий спрос на стереолитографические принтеры будет стимулировать рост производства расходных материалов, что будет вести к дополнительному снижению цен.
Перейти на главную страницу Энциклопедии 3D-печати
3dtoday.ru
Мифы о 3D-печати или почему нельзя напечатать принтер на принтере
Появление и быстрое распространение 3D-печати стало настоящей сенсацией. Серьезная технология обещает множество возможностей для развития науки и медицины, но также – и применение для индустрии развлечений. Соразмерно с этим начали появляться и множится мифы и 3D-печати. Почему нельзя купить 3D-принтер и напечатать на нем 3D-принтер? Разбираемся вместе.
МИФ: 3D-печать заменит все остальные способы производства.
НА САМОМ ДЕЛЕ НЕТ: Несмотря на то, что 3D-печать – это действительно впечатляющая технология, очень сложно утверждать, что она заменит все существующие способы производства вещей. Да, с помощью нее можно создать предмет, независимо от его формы и сложности, однако не все задачи под силу 3D-принтеру. Те сферы, где индустриальные способы производства признают свое бессилие, для 3D-печати просты: она позволяет с легкостью справляться со сложностями.
Однако, лучшей метафорой здесь будет приготовление пищи. После изобретения микроволновой печи мы не перешли полностью на этот способ готовки. Мы, как прежде, лишь отчасти пользуемся новинкой техники, поскольку старая технология (газовая или индукционная плита) все еще работает лучше. 3D-печать, подобно микроволновке, дополнит нашу жизнь, сделает ее легче и проще во многих сферах, однако все еще это очень незрелая технология, которая вряд ли сможет обогнать развитие классических методов производства.
МИФ: 3D-принтер будет стоять в каждом доме.
НА САМОМ ДЕЛЕ НЕТ: Толку в таком приобретении будет маловато, если вы только не посвящаете большую часть свободного времени моделированию и настройке техники. Ведь даже для того, чтобы создать простую тарелку, вам нужно создать ее схему, подобрать материал, и запастись терпением. Принтер будет долго ее печатать. Инженеры и научные работники смотрят на перспективу распространения 3D-принтеров с большим скептицизмом.
По мнению экспертов, 3D-печать никогда не станет дешевле, нежели массовое производство. К тому же, для человека всегда была важна эстетика предмета – а 3D-принтеры заботятся о ней менее всего. Придется посвятить отдельный период времени тому, чтобы довести полученный предмет до идеала. Согласитесь, гораздо проще пойти и купить тарелку в супермаркете. И, похоже, так будет всегда.
МИФ: На 3D-принтере можно напечатать все, что угодно.
НА САМОМ ДЕЛЕ НЕТ: Расскажите об это врачам, и вы проведете чудесный вечер, хохоча и смеясь. Лучшие умы мира сейчас бьются над тем, чтобы суметь печатать органы, подходящие для трансплантации человеку. Многолетние разработки не приносят результатов, так что на 3D-принтере можно напечатать далеко не все. Как минимум, существует ограничение по «разрешению» печати, то есть – по размеру сопла. Если вам нужна деталь, которая меньше, чем сопло принтера, то создать ее не получится.
МИФ: 3D-печать может быть выполнена в любом цвете.
НА САМОМ ДЕЛЕ НЕТ: Ну, зеленого слоника напечатать получится. Равно, как и коричневую картошку. А вот напечатать футболку хиппи-чувака, раскрашенную всеми цветами радуги, не выйдет. 3D-принтер позволяет создавать объекты в одном, максимум — двух цветах. Если вам нужно большее количество оттенков, придется самому менять прутки во время работы принтера, или подкрашивать материал на ходу. Эксперименты показывают, что в лучшем случае, получается создать размытые переходы цветов, но четкая граница пока не получается.
МИФ: «Куплю 3D-принтер и напечатаю на нем 3D-принтер».
НА САМОМ ДЕЛЕ НЕТ: Не-а, не получится. Механизмы, которые состоят из нескольких деталей – непосильная задача для 3D-принтера. Самые сложные модели, которые удалось напечатать – это игрушечная машинка с крутящимися колесами, и свисток с небольшим шариком внутри. И то, шарик придется отламывать изнутри отверткой. Проблема в том, что 3D-принтер использует горячие материалы в работе. И механизмы из нескольких деталей получатся нерабочими, потому что отдельные элементы, даже фигурно выточенные, скорее склеятся между собой, нежели получатся такими, как надо.
Всего: 4 270 , Сегодня: 1
lubiteliyablok.com
Что может быть напечатано на 3D-принтере?
Использование 3D-технологий позволяет создавать поистине уникальные и неповторимые вещи. Возможности аддитивных методов безграничны, поэтому любая фантазия или задумка с легкостью воплощается в реальный объект. То, что было напечатано на 3D-принтере, может по праву называться современным искусством. Мы подготовили для вас список из 9-ти самых потрясающих изделий и объектов, созданных на трехмерном принтере.
Пальмы с солнечными батареями
В ОАЭ было напечатано на 3D-принтере специальные устройства с бесплатной раздачей Wi-Fi. Сделаны эти изделия в виде пальм, которыми украсили улицы в Дубае. Кроме того, что возле них можно подключиться к сети интернет, они также оснащаются солнечными батареями. Поэтому при желании от такой «пальмы» можно подзарядить телефон или любой другой электронный прибор.
Использование 3D-принтеров позволило создать прочные устройства необычной формы. Для изготовления применили бетон и волоконно-армированный пластик. Примечательно, что подобные установки надежно защищены от воздействия ультрафиолетовых излучений и влаги. Эти уникальные пальмы выполняют еще одну важную функцию – освещают город в темное время суток.
Автомобиль, напечатанный на 3D-принтере
Современный мир настолько динамично развивается, что на смену обычным транспортным средствам пришли инновационные изделия, напечатанные на 3D-принтере. Известно много примеров подобных автомобилей. Одним из них является продукт компании Lосal Моtors. Его представили в прошлом году в Лас-Вегасе. Для его создания применялся метод DDМ. Кузов произвели из термопластичных материалов. Остальные же детали выпускали преимущественно из углеродных волокон и АВS-пластика в соотношении 20% и 80%, соответственно. В среднем такое творение автомобильной промышленности стоит около 53-х тысяч долларов.
Но это не единственная машина, напечатанная на 3d-принтере. Свеженький пример высокотехнологичного авто – суперкар Вlаde, новое творение Divergent Microfactories. По сути, это каркасная структура алюминиевых узлов и карбоновых стержней. Аддитивная технология позволила не только сэкономить материалы для изготовления машины, но и облегчила ее на целых 90%! Оборудовали этот суперкар 700-литровым двигателем, что позволяет ему разгоняться до сотни всего за 2,2 секунды.
«Зеленый велосипед»
Байки, напечатанные на 3D-принтере, фото их деталей не сложно найти в Интернете. В принципе, многие фирмы и компании выпускали свои версии 3D-печатных великов. Но сейчас хотелось бы поговорить о модели, напечатанной на 3D- принтере от Еuroсоmpositi. Назвали велосипед Вhulk.
Он считается первым в своем роде устройством, которое снабжается абсолютно экологически чистой рамой. При этом она может похвастаться высокой устойчивостью к воздействию окружающей среды. Раму напечатали из биоразлагаемого РLA-пластика. Примечательно, что для ее создания затратили намного меньше усилий, времени и энергии, чем при производстве металлической рамы.
Применение 3D-технологий в медицине
Возможности 3d-принтера в медицинской отрасли безграничны. Особых успехов удалось добиться в сфере протезирования. Одним из успешных проектов, посвященных этому, считается Аrt 4 Leg. Его суть – создание поверхностей с аутентичным дизайном. Впоследствии данные поверхности крепят к протезам мощнейшими магнитами. Что это дает? Уникальные возможности 3D-печати позволяют обладателям необычных протезов выражать свою индивидуальность.
Что можно напечатать на 3D-принтере еще? Некоммерческая организация «Орeratiоn оf Норе» продемонстрировала уникальные возможности аддитивной технологии. Ей удалось успешно восстановить поврежденную часть лица пациента. Изначально провели компьютерную томографию, после чего преобразовали полученные изображения в трехмерные данные. Затем напечатали модель челюсти на 3D-принтере так, что можно было с ее помощью полностью реконструировать лицо. Для этого врачи провели 12-ти часовую операцию.
Высокое качество 3D-принтера позволяет даже создавать отдельные человеческие органы. Пока их используют как модели для передоперационных тренировок. Но не за горами времена, когда такие органы будут трансплантировать больным, спасая тем самым их жизни.
Что можно напечатать на 3D-принтере: фото настоящего оружия
Первым 3D-печатным оружием считается револьвер Джеймса Патрика. Практически все элементы PM522 Washbear .22LR были напечатаны с помощью аддитивной техники. Еще один пример оружия – полуавтоматический пистолет Shutу МР-1. Это вполне «серьезный» агрегат для убийств, хотя и мелкокалиберный.
Венцом коллекции 3D-печатного оружия считается Rail Gun. Несмотря на то, что этот пластиковый пистолет не отличается самым мощным выстрелом, зато он выглядит очень «грозно» и устрашающе.
Стальной мост
Возможности 3D-печати активно используют и в строительной отрасли. Можно назвать немало архитектурных объектов, которые так или иначе были созданы с помощью аддитивной технологии. Поистине впечатляющим является проект, над которым работают Jоris Lааrmаn Lаb, Неijmаns и МХ3D. Компании планируют возвести в исторической части Амстердама стальной пешеходный мост.
Для строительства моста будет использоваться технология MX3D и промышленные манипуляторы с шестью степенями свободы. Данное решение позволит делать металлические конструкции прямо в воздухе. Отказ от традиционной сварки в пользу послойного наплавления металлических капель делает проект поистине уникальным.
Тапкабургер
Описание 3D-принтера и его безграничных возможностей стоит начать с того, что на нем можно делать еду. Аддитивные механизмы используют при изготовлении необычных макаронных и кондитерских изделий – этим уже никого не удивить. А вот «Shoe Burger» действительно поражает.
Этот бургер изготовляется в форме вашего кроссовка или туфли. Чтобы получить такой необычный тапкабургер, вначале необходимо отсканировать свой башмак и сделать его цифровую копию. Дальше очередь за ее печатью на трехмерном принтере. Следующий шаг – обратная форма из термостойкого пищевого силикона. Ее-то вы потом и зальете тестом перед отправкой в духовку.
Наноскульптуры
Существует не только 3D-принтер 3D Mini, но и возможность печати мини-скульптур и нанообъектов. Так, к примеру, Джонти Харвитс поражает всех своими необычными творениями. Их нельзя потрогать, нельзя даже увидеть без микроскопа. Секрет уникальных изделий состоит в особом устройстве для печати. Такое устройство избавляет от всяческих проблем со слоистостью. Правда, если вы захотите на нем напечатать модель, которую можно будет увидеть, ждать придется очень долго.
Институт «KarlsruheInstitute of Тесhnology» создал особую технологию мультифотонной литографии, благодаря которой и возможна печать подобных наноскульптур. Основан новый метод на феномене двухфотонного поглощения.
Биопечать
Другими словами, это особый Би-код, технология печати объектов с помощью пчел. Дженнифер Берри смогла контролировать пчел, тем самым добилась того, что они строят ульи по заданным формам. Биолог сделала своеобразный биопринтер, то есть искусственный улей. В нем пчелы живут под ее контролем и под ее руководством делают соты.
Технология не отличается сложностью. Вначале задается некая форма, которая должна ограничивать внешние границы создаваемой модели. Кроме этого, необходимо показать направление «роста» сот при помощи специального материала. Все это нужно поместить в прозрачный бокс. Внутри него обязательно поддерживается определенный микроклимат.
make-3d.ru
Что такое 3D печать? | Как применить 3D принтер и прочие технологии 3D печати
- Что такое 3D печать?
- Технологии 3D печати
- История возникновения 3D печати
- Сферы применения 3D печати
- Что такое 3D принтер?
- В чем разница между машинами по прототипированию и 3D принтером?
- Что можно сделать при помощи 3D принтера?
- Кто занимается производством 3D принтеров?
- Какая цена 3D принтера?
- Как собрать 3D принтер?
- Какие материалы используются при печати 3D принтером?
- Какое программное обеспечение для 3D моделирования подойдет начинающим?
- Я не владею навыками 3D моделирования, сколько времени понадобится для их приобретения?
- Где в интернете можно найти готовые примеры 3D моделей?
- Где найти интернет-сервис 3D печати?
3D печать также известна как компьютерное моделирование или альтернативное конструирование. Это процесс воссоздания реального объекта по образцу 3D модели. Цифровая 3D модель сохраняется в формате файла STL и передается на печать 3D принтеру. Затем 3D принтер, накладывая слой за слоем, формирует реальный объект.
Немногие технологии способны выполнить 3D печать. Основная разница заключается в том, каким образом слои накладываются один на другой.
СЛС (селективное лазерное сплетение), НРМ (моделирование путем наложения слоев расплавленных материалов) и СЛА (стереолитиография) – наиболее распространенные технологии, используемые при 3D печати. Технологии селективного лазерного сплетения (СЛС) и моделирование путем наложения слоев расплавленных материалов (НРМ) используют расплавленные материалы для создания слоев.
Это видео демонстрирует, каким образом селективный лазер расплавляет тонкодисперсные порошки и шаг за шагом превращает их в объемную фигуру.
Это видео показывает процесс моделирования путем наложения слоев расплавленных материалов (НРМ).
Видео ниже раскрывает секрет процесса стереолитиографии (СЛА).
Чаще всего решающими факторами выступают: скорость и цена создания прототипа, цена 3D принтера, возможности выбора материалов и их доступность.
5 октября 2011 года – Roland DG Corporation презентовала первую модель под названием iModela iM-01.
Сентябрь 2011 года – Венский технический университет разработал уменьшенное, более легкое и дешевое устройство для печати. Этот самый маленький 3D принтер весом около 1,5 кг стоит примерно1200 евро.
Август 2011 года – инженерами Университета Саутгемптона был создан первый в мире самолет при помощи 3D печати.
Июль 2011 года – под руководством Университета Эксетера, Университета Брунель и разработчика приложений компании Delcam, британские исследователи представили первую в мире 3D шоколадный принтер.
6 Июня 2011 года – Shapeways и Continuum Fashion заявили о создании первого в мире печатного 3D бикини.
Январь 2011 – голландский производитель 3D принтеров, компания Ultimaker сумела увеличить скорость печати с 300 мм /сек до 350 мм /сек.
Январь 2011 – исследователи из Корнельского университета начали строить 3D принтер для продуктов питания.
8 Декабря 2010 года – компания Organovo, Inc., специализирующаяся на применении биопечати в регенеративной медицине, объявила про публикацию данных о создании первых кровеносных сосудов, созданных путем биопечати.
Ноябрь 2010 года – представлен первый прототип автомобиля Urbee. Это первый в мире автомобиль, корпус которого полностью был создан при помощи огромного 3D принтера. Все внешние компоненты – включая прототипы окон – были изготовлены компаниями Dimension 3D Printers и Fortus 3D Production Systems в Страсбурге, которые предоставили услуги цифрового производства – по запросу компании RedEye.
2008 год – компания Objet Geometries Ltd. заявили о намерении создать первую в истории систему быстрого прототипирования Connex500™, которая впервые позволит производить 3D объекты, используя одновременно сразу несколько видов материалов.
2008 год – вышла первая версия принтера Reprap, который мог производить около 50% собственных комплектующих.
2006 год – стартовал открытый проект – Reprap – целью которого стало создание самовоспроизводящихся 3D принтеров. Пользователь имеет право распространять и/или заменять их в соответствии с лицензией GNU (General Public Licence).
2005 год – компания Z Corp. выпустила принтер Spectrum Z510, который стал на рынке первым принтером с широкими возможностями, позволившим печатать в цвете.
1997 год – компания EOS продала проект стереолитиографии компании 3-D Systems, однако все же осталась крупнейшим производителем в Европе.
1996 год – компания 3D Systems выпустила принтер «Actua 2100». Термин «3D принтер» впервые был использован для обозначения машины быстрого прототипирования.
1996 год – компания Z Corporation представила модель «Z402».
1996 год – компания Stratasys выпустила принтер «Genisys».
1995 год – компания Z Corporation получила эксклюзивное право от MIT на использование технологий и начала разработку 3D принтеров, основанных на технологии 3DP.
1993 год – Массачусетский технологический институт (MТИ) запатентировал «Технологию трехмерной печати». Она подобна струйной технологии 2D принтеров.
1993 год – основана компания Solidscape для производства машин на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, при этом относительно недорого.
1992 год – компания DTM продала первую систему селективного лазерного спаивания (СЛС).
1992 год – компания Stratasys продала первое устройство «3D Modeler», основанное на FDM.
1991 год – Helisys продала первую технологию для производства многослойного объекта (ПMO).
1989 год – компания Scott Crumpосновала предприятие Stratasys.
1988 год – компания Scott Crump изобрела моделирование плавлеными осаждениями (МПО).
1988 год – компания 3D Systems разработала модель принтера SLA-250, первого принтера для использования в домашних условиях.
1986 год – компания Charles Hull основала предприятие 3D Systems и разработала первый промышленный 3D принтер под названием Stereolithography Apparatus.
1986 год – компания Charles Hull дала название и запатентировала технику стереолитиографии (Stereolithography).
1984 год – компания Charles Hull разработала технологию 3D печати для воссоздания реальных объектов, используя цифровые данные.
Одной из важных сфер для применения 3D печати является медицина. Используя 3D печать, хирурги могут конструировать макеты частей тела пациента, которые нужно прооперировать. 3D печать позволяет всего в течение нескольких часов изготовить запчасти практически с нуля. Она позволяет дизайнерам и разработчикам придать нужную форму плоской поверхности.
На сегодняшний день практически всё, как запчасти для авиакосмической промышленности, так и детские игрушки, начинают производить при помощи 3D принтеров. 3D печать применяется для создания украшений и произведений искусства, архитектуры, в индустрии моды, архитектуре и дизайне интерьера.
Вот несколько необычных способов применения 3D печати:
1. Первый в мире принтер для печати шоколадом
2. Первый в мире купальник, напечатанный на 3D принтере:
3D принтер отличается от обычного принтера. 3D принтер производит печать объектов в трехмерном пространстве. 3D модель строится путем накладывания слоев. Поэтому весь процесс получил название быстрого макетирования, или 3D печати.
Параметры таких принтеров находятся в приделах от 28 x 328 x 606 DPI (xyz) до 656 x 656 x 800 DPI (xyz) в ультра-HD расширении. Точность составляет 0.025 мм — 0.05 мм на 2,5 см. Максимальный размер модели, которую он может произвести, до 737 мм x 1257 мм x 1504 мм.
Огромным недостатком использования 3D принтера в домашних условиях является его высокая стоимость. Еще один недостаток – печать модели может проходить на протяжении нескольких часов или даже дней (зависит от количества деталей, сложности конструкции, размера объекта). Помимо вышеупомянутого, профессиональное программное обеспечение для 3D моделирования тоже стоит недешево.
Как альтернатива, существуют упрощенные версии 3D принтеров для «любителей», их стоимость гораздо ниже. Материалы, которые они используют при печати, также менее дорогие. Однако, такие 3D принтеры менее точные, если сравнивать с коммерческими 3D принтерами.
3D принтеры являются упрощенным вариантом машин для прототипирования. Они менее затратные и не такие функциональные.
Машины для прототипирования (МП) – это традиционный метод, годами применяемый в автомобилестроении и авиационной промышленности.
В общей сложности, 3D принтеры компактнее и меньше, нежели МП. Они идеально подходят для применения в офисах. Они потребляют меньше энергии и занимают меньше места. Их задача – репродукция небольших объемных предметов, сделанных из нейлона или других видов пластика. Это также означает, что 3D принтеры производят небольшие запчасти. Машины для прототипирования, ко всему прочему, имеют встроенные камеры размером примерно 25,5 см, а у 3D принтеров их размер достигает 20,3 см. Однако, 3D принтеры имеют такой же ряд функций, что и МП, такие как: проверка и утверждение дизайна, создание прототипа, восприятие информации от других источников и прочее.
В результате 3D принтер прост в обращении и недорогой в обслуживании. Вы можете приобрести один из специальных DIY-наборов и собрать его самостоятельно. Все это стоит дешевле, нежели профессиональное прототипирование, 3D принтер можно приобрести за $1000 или менее. В то время как профессиональное быстрое прототипирование обойдется как минимум в $50,000.
3D принтеры не такие точные, как машины для быстрого прототипирования. В связи с их упрощенностью, выбор материалов для печати также ограничен.
Знатоки в области 3D печати заявляют: «Если вы можете это нарисовать, значит, вам под силу это создать». Видео ниже показывает, какие различные предметы можно сделать при помощи 3D принтера. Все же, сложные объекты можно создать только при помощи профессионального 3D принтера, а их может себе позволить далеко не каждый.
Промышленные 3D принтеры производят такие предприятия, как:
3D принтеры для частного использования:
Вот таблица сравнения цен на DIY 3D принтеры (комплекты для сборнки) и на полностью укомплектованные промышленные 3D принтеры (менее $25,000)
Reprap
Для 3D печати используют разнообразные материалы, такие как: ABS и PLA пластмассы, полиамид (нейлон), стекловолокно полиамида, стереолитографические материалы (эпоксидные смолы), серебро, титан, сталь, воск, фотополимеры и поликарбонаты.
Если вы начинающий пользователь, то вы можете попробовать установить одну из программ для 3D моделирования, которые можно загрузить бесплатно.
- Google SketchUp – это программа довольно интересная и бесплатная, известна простотой использования. Чтобы построить модели в SketchUp, вы рисуете контуры и лица, используя несколько простых приемов, которые можно освоить в кратчайшие сроки. При помощи инструмента Push/Pull (вдавить/выдавить) любую плоскую поверхность модно преобразить в трехмерную фигуру. Программа может работать совместно с программой Google Earth. Из Google Earth можно загрузить фотографию ландшафта (рельефа) территории, или построить в SketchUp модели, которые можно будет увидеть в Google Earth.
- 3Dtin – простейшая программа для 3D моделирования. Можно рисовать непосредственно из браузера.
- Blender – это бесплатный, доступный контент наборов для 3D моделирования, которые подходят для всех основных операционных систем, имеющих лицензию GNU (General Public License). Blender был разработан для внутреннего пользования голландской анимационной студии NeoGeo и Not a Number Technologies (NaN). Эта мощная программа имеет качества высококлассного программного обеспечения для 3D моделирования.
- OpenSCAD – программа для создания твердых 3D CAD объектов. Это бесплатное программное обеспечение подходит для Linux/UNIX, MS Windows и Mac OS X. Программа сосредоточена не на дизайнерских аспектах 3D моделирования, а на вопросах CAD.
- Tinkercad – новый способ создавать модели более быстро для печати 3D принтером. Всего три основных инструмента создают широкий спектр возможностей для создания множества полезных вещей. Как только проект завершен, загрузите STL-файл и начните 3D печать.
Вы можете приобрести навыки 3D моделирования, изучая принципы работы инструментов таких программ как Rhino, Blender или SketchUp.
Ознакомление с инструментами 3D моделирования (программы Rhino, Blender или SketchUp) займет около трех недель.
Чтобы достичь профессионального уровня, понадобиться обучение и практика на протяжении примерно одного года.
Вот список Интернет ресурсов, имеющих подобные примеры:
Компании Shapeways, i.Materialise, Sculpteo и Ponoko активно предлагают услуги 3D печати в Интернете.
www.3dindustry.ru
Как работает 3D-принтер: от напечатанного текста до печати домов
Сегодня смело можно утверждать: без технологии 3D-печати современную цивилизацию представить невозможно, и вряд ли можно назвать другую так стремительно развивающуюся технологию.
По страницам истории
По мнению многих компьютерных экспертов, родоначальником 3D-печати и разработчиком первого еще обычного принтера стал англичанин Бэббидж. В 1822 году он приступил к созданию так называемой «большой разностной машины», предназначенной для производства расчетов и их распечатки. Как все великое, идеи Бэббиджа намного опередили свое время и, спустя 20 лет, так и не реализованный, проект был закрыт.
Большая разностная машина БэббиджаПрошло более 100 лет, прежде чем была предпринята вторая на сей раз более удачная попытка создания принтера. Первый черно-белый принтер увидел свет в 1953 году. Минуло еще 23 года и компания IBM создает первый струйный цветной принтер. Сегодня количество принтеров в офисах и других организациях уступает разве что числу компьютеров.
Во второй половине 80-х годов происходит очередной технологический прорыв. В 1986 году американец Чек Халл сформулировал концепцию трехмерной печати, а через два года его соотечественник Скот Крамп на ее основе разработал технологию FDM — формования через декомпозицию плавящегося материала. Все ныне действующие трехмерные принтеры своим появлением обязаны именно ей.
Как работает 3D-принтер
По сравнению с печатным принтером, переносящим электронный текст на плоскую бумагу, 3D-принтер имеет дело с трехмерной информацией. Одним словом, он воссоздает объект таким, какой он есть.
Как же печатает 3D-принтер? Вначале создается цифровая модель объекта на компьютере с помощью специальной программы. Она как бы «расчленяет» модель на слои, после чего в действие вступает принтер. Как и у его печатающего «собрата», у 3D-принтера есть свои чернила, правда, состоящие из композитного порошка.
Около 10 лет назад использовался всего лишь один вид «чернил» — пластик АВС. Сегодня их уже более сотни – полипропилен, бетон, целлюлоза, нейлон, металлические порошки, гипс, шоколад и множество других.
В процессе работы исходный материал превращается в массу, которая наносится слой за слоем на рабочую поверхность через специальное сопло. После нанесения очередного слоя поверх него может накладываться клеевое покрытие, затем снова слой «чернил». И так до полного воспроизводства объекта. Работу 3D-принтер можно посмотреть на видео.
Но это общий принцип работы 3D-принтера, так называемая технология быстрого прототипирования. На ее основе разработано несколько способов. Вот лишь некоторые из них.
Стереолитография (SLA)
Одна из первых технологий 3D-печати. В качестве строительного материала используется смесь жидкого полимера с реагентом-отвердителем, чем-то похожая на эпоксидную смолу. Полимеризация и последующее отвердение смеси происходит под действием ультрафиолетового лазера.
Модель формируется тонкими слоями на подвижной подложке с отверстиями, прикрепленной к микролифту-элеватору, который перемещается вверх или вниз на глубину одного слоя. Во время погружения в жидкий полимер луч лазера фиксируется на местах, подлежащих отвердению. Как только один слой сформирован, заготовка поднимется (опускается).
Многоструйное моделирование
Данная технология разработана в компании 3D Systems. Она имеет очень много общего с технологией струйной печати. Особенность устройства и принцип работы этого 3D-принтера состоит в том, что здесь задействовано несколько (до нескольких сот) сопел, расположенных рядами на печатающей головке.
Чернила становятся жидкими посредством нагревания и после послойного нанесения на рабочую поверхность при комнатной температуре застывают. Головка перемещается в горизонтальной плоскости, а вертикальное смещение по мере формирования каждого нового слоя осуществляется за счет опускания рабочего стола.
Выборочное лазерное спекание (SLS)
Настоящим прорывом стало внедрение технологий 3D-печати в металлообработку. Как же работает 3D-принтер по металлу? Особенностью этой технологии является то, что функцию рабочей жидкости выполняет композитный порошок, состоящий из частиц диаметром от 50 до 100 мкм. Порошок наносится горизонтально равномерными тонкими слоями, а на завершающем этапе определенные участки спекаются лазерным лучом.
Одно из главных достоинств лазерного спекания – уникальная экономичность и практически полная безотходность по сравнению с традиционными механическими методами обработки металла – сверлением, фрезеровкой, резанием, литьем и другими, а также минимальная финишная обработка.
Необходимое условие лазерного спекания – азотная среда с минимальным содержанием кислорода, поскольку процесс протекает в условиях высоких температур.
Этим перечень технологий 3D-печати далеко не ограничивается. Его дополняют послойное склеивание пленок, послойное наплавление, послойная печать расплавленной полимерной нитью, ультрафиолетовое облучение через фотомаску.
Что бы еще напечатать
Выяснив, как работает 3D-принтер, впору поведать о том, что сегодня можно сделать с его помощью. Подобно модной и очень удобной одежде, его «примеряют» на себя представители самых различных направлений науки и промышленности. Как оказалось, напечатать можно практически все от ширпотреба из пластика, до солнечных батарей, автомобильных кузовов, деталей для реактивных двигателей и медицинских протезов.
На технологию 3D-печати «положили глаз» военные и строители. Не так давно на борт МКС был доставлен разработанный по заказу NASA 3D-принтер, с помощью которого в условиях невесомости было изготовлено несколько необходимых инструментов. Вполне возможно, что таким образом во время будущей марсианской миссии отдельные запчасти придется изготавливать прямо на борту космического корабля.
Рассматривается также вариант возведения марсианских домов методом 3D-печати, для чего с Земли туда будут доставлены специальные строительные принтеры. Основой «чернил» для них станет марсианский грунт.
www.techcult.ru